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1. Parametrization of HARA utility

In the paper, I impose the assumptions û′ > 0, û′′ < 0 and û′′′ ≥ 0 on the agent’s reduced-

form utility function. I argue here that these assumptions are satisfied for a broad class of

HARA utility functions.

The parameterized class of utility functions

û(µ) =




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
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− 1
1−c1

(c1µ+ c2)
−

1

c1
+1

if c1 ∈ R\{0, 1} and c2 ∈ [max{−c1, 0},∞)

−c2 exp(−
1
c2
µ) if c1 = 0 and c2 ∈ (0,∞)

ln(µ+ c2) if c1 = 1 and c2 ∈ (0,∞)

exhibits hyperbolic absolute risk aversion (HARA). The Arrow-Pratt measure of absolute risk-

aversion is given by rA(µ) ≡ −û′′(µ)/û′(µ) = 1/(c1µ+ c2). As special cases, this class includes

quadratic utility (c1 = −1), cubic utility (c1 = −1/2), exponential/CARA utility (c1 = 0),

logarithmic utility (c1 = 1), and CRRA utility (c2 = 0). The parameter space is illustrated by

the grey areas in Figure S-1; the special cases are indicated by the colored line segments. û′ > 0

and û′′ < 0 is true for the entire parameter space; û′′′ ≥ 0 is true for c1 ≥ −1. That is, the

assumptions in my reduced model are satisfied for any HARA utility function with parameters

in the dark grey area. This includes all mentioned special cases.
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Figure S-1: Parameter space and special cases of HARA utility
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Figure S-2: Inducible participation thresholds [û(µ) = −(1− µ)2, θ ∼ U[θ(δ), θ(δ)]]

2. Discussion of the optimal participation behavior in the uniform-quadratic case

It follows from the analysis in the paper that the participation threshold that the principal

does optimally induce solves the following program:

max
θ∗∈Θ∗

(1− F (θ∗))Eτ [v̂(µ)] + F (θ∗)v̂(EF [θ|θ ≤ θ∗])

s.t. πNFP
ρ(θ∗) and χθ∗ induce τ

ρ(θ∗) solves Eτθ∗ [û(µ)] = û(EF [θ|θ ≤ θ∗]) if θ∗ ∈ Θ∗\Θ∗∗

ρ(θ∗) = 1 if θ∗ ∈ Θ∗∗

(S-1)

In this supplementary material, I discuss the choice of the optimal participation threshold in

the uniform-quadratic case:

Assumption S-1 û(µ) = −(1 − µ)2, v̂(µ) = (µ − EF [θ])
2, and θ is uniformly distributed on

[θ(δ), θ(δ)] ≡ [(1− δ)/2, (1 + δ)/2] with δ ∈ (0, 1).

Under this assumption, a higher δ is associated with more informative private information.

I obtain from Lemma A2 in the paper that Θ∗ = {θ∗ ∈ [θ, θ)|θ∗ ≤ θ
∗

(δ)} and Θ∗∗ = {θ∗ ∈

[θ, θ)|θ∗ = θ
∗

(δ)} with θ
∗

(δ) ≡ 2
√

θ(δ) − θ(δ). Figure S-2 illustrates how the sets Θ∗ and Θ∗∗

depend on δ. A rough intuition is the following: Inducing a given participation threshold θ∗

consists of two parts, the motivation of participation for private signals θ > θ∗ and the deter-

rence of participation for private signals θ < θ∗. By making the test sufficiently uninformative,

the motivation part can always be satisfied. Thus, crucial for inducibility is the deterrence part.

If δ ≤ 1/2, the agent’s signaling motive is weak for any possible private signal. By making the

test sufficiently informative, he can for any possible private signal be deterred from partici-

pating. As a consequence, any threshold θ∗ ∈ [θ(δ), θ(δ)) is inducible. If δ > 1/2, there exist
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signals for that the agent is sufficiently certain to be good such that he cannot be deterred from

participating by increasing the informativeness of the test. Every threshold θ∗ ∈ (θ
∗

(δ), θ(δ)) is

then not inducible. Due to a partial unraveling effect that becomes stronger as δ increases, the

set of private signals for that the agent cannot be deterred from participating becomes larger

as δ increases. If δ is close to one, there is almost full unraveling for any informative test.

In Section 3 of the paper, I have argued that an accurate NFP test induces less participation

than any sufficiently inaccurate NFP test. Although the switch from a very inaccurate NFP

test to an accurate NFP test causes clearly less participation, participation may locally increase

as the accuracy of the test increases. Responsible for this is that an increase in the participation

threshold improves the pool of participants as well as the pool of non-participants. Depending

on the relative strength of these improvements, participation may get more or less attractive in

response to an increase in the supposed participation threshold. This implies that it is a priori

not clear whether the equilibrium participation threshold increases or decreases in response to

a small change in the test accuracy. The subsequent proposition establishes that there is under

Assumption S-1 also locally for any intermediate participation threshold a trade-off between

accuracy and participation.

Proposition S-1 (Trade-off between accuracy and participation) Suppose that Assump-

tion S-1 holds and consider for each θ∗ ∈ Θ∗ the test πNFP

ρ(θ∗) that induces θ∗. Then, ρ(θ∗) is

increasing; that is, more participation is induced by a less accurate test.

Proof. It follows from Lemma A2 in the proof of Proposition 2 in the paper that Θ∗ is under

Assumption S-1 a convex set. Let ρ(θ∗) be as defined in (S-1). ρ(θ∗) is the unique solution to

Eτθ∗ [û(µ)] = û(EF [θ|θ ≤ θ∗]) if θ∗ ∈ Θ∗\Θ∗∗. By Lemma A2 (b) in the proof of Proposition 2

in the paper, the same equation holds if θ∗ ∈ Θ∗∗. Under Assumption S-1, the solution is also

in this case unique. Thus, for any θ∗ ∈ Θ∗, I can write the equation that uniquely determines

the test accuracy ρ as

g(ρ, θ∗) ≡ (1− ρθ∗)û(µ1(ρ, θ
∗)) + ρθ∗û(1)− û(EF [θ|θ ≤ θ∗]) = 0

with

µ1(ρ, θ
∗) ≡

EF [θ|θ ≥ θ∗]− EF [θ|θ ≥ θ∗]ρ

1− EF [θ|θ ≥ θ∗]ρ
.

By applying the Implicit Function Theorem, I obtain that ρ(θ∗) is a continuously differentiable

function with

ρ′(θ∗) = −
∂g(ρ, θ∗)/∂θ∗

∂g(ρ, θ∗)/∂ρ
.

I will conclude this proof by showing that ∂g(ρ, θ∗)/∂θ∗ > 0 (Step 1) and that ∂g(ρ, θ∗)/∂ρ < 0

(Step 2).
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Step 1. I have,

∂g(ρ, θ∗)

∂θ∗
= ρ(û(1)− û(µ1(ρ, θ

∗))))

+(1− ρθ∗)
1

2

1− ρ

(1− EF [θ|θ ≥ θ∗]ρ)2
û′(µ1(ρ, θ

∗))−
1

2
û′(EF [θ|θ ≤ θ∗])

> ρ(û(1)− û(µ1(ρ, θ
∗)))

+
1

2

(

1− ρθ∗

1− EF [θ|θ ≥ θ∗]ρ

1− ρ

1− EF [θ|θ ≥ θ∗]ρ
− 1

)

û′(µ1(ρ, θ
∗))

> ρ(û(1)− û(µ1(ρ, θ
∗)))

+
1

2

(

1− ρ

1− EF [θ|θ ≥ θ∗]ρ
− 1

)

û′(µ1(ρ, θ
∗))

= ρ(û(1)− û(µ1(ρ, θ
∗)))−

1

2
ρ(1− µ1(ρ, θ

∗))û′(µ1(ρ, θ
∗))

= 0.

The transformations arise as follows: The first equality follows from using that

dEF [θ|θ ≥ θ∗]

dθ∗
=

dEF [θ|θ ≤ θ∗]

dθ∗
=

1

2

under Assumption S-1, and that

∂µ1(ρ, θ
∗)

ρθ∗
=

1

2

1− ρ

(1− EF [θ|θ ≥ θ∗]ρ)2
.

To see why the first inequality holds, notice first that necessary for g(ρ, θ∗) = 0 is that

µ1(ρ, θ
∗) < EF [θ|θ ≤ θ∗]. The inequality follows because û′′ < 0 implies then that û′(µ1(ρ, θ

∗)) >

û′(EF [θ|θ ≤ θ∗]). The second inequality follows from using that θ∗ < EF [θ|θ ≥ θ∗] implies that

(1 − ρθ∗)/(1 − EF [θ|θ ≥ θ∗]ρ) > 1. The second equality follows from using that I can rewrite

the expression in parentheses as −ρ(1 − µ1(ρ, θ
∗)). The third equality follows from using that

the structure of û in Assumption S-1 implies that û(1)− û(µ1) = 1/2 · (1− µ1)û
′(µ1).

Step 2. I have,

∂g(ρ, θ∗)

∂ρ
= θ∗(û(1)− û(µ1(ρ, θ

∗))))

−(1− ρθ∗)
EF [θ|θ ≥ θ∗]

1− EF [θ|θ ≥ θ∗]ρ
(1− µ1(ρ, θ

∗))û′(µ1(ρ, θ
∗))

= θ∗(1− µ1(ρ, θ
∗))

·
[ û(1)− û(µ1(ρ, θ

∗))

1− µ1(ρ, θ∗)
−

1− ρθ∗

1− EF [θ|θ ≥ θ∗]ρ

EF [θ|θ ≥ θ∗]

θ∗
û′(µ1(ρ, θ

∗))
]

> θ∗(1− µ1(ρ, θ
∗)) ·

[ û(1)− û(µ1(ρ, θ
∗))

1− µ1(ρ, θ∗)
− û′(µ1(ρ, θ

∗))
]

> 0.
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Figure S-3: Optimal participation threshold under Assumption S-1

The transformations arise as follows: The first equality follows from using that

∂µ1(ρ, θ
∗)

∂ρ
= −

EF [θ|θ ≥ θ∗](1− EF [θ|θ ≥ θ∗])

(1− EF [θ|θ ≥ θ∗]ρ)2

= −
EF [θ|θ ≥ θ∗]

1− EF [θ|θ ≥ θ∗]ρ
(1− µ1(ρ, θ

∗)).

The second equality follows from rearranging. The first inequality follows from EF [θ|θ ≥ θ∗] >

θ∗. The second inequality follows from û′′ < 0. q.e.d.

I can interpret any binary test as a pass-fail test where the negative result s = 1 corresponds

to “fail” and the positive result s = 2 corresponds to “pass”. If the test is completely informa-

tive, the agent passes if, and only if, he is good; if the test is subject to false positives, the agent

does sometimes pass even when he is bad; if the test is subject to false negatives, the agent

does sometimes fail although he is good. If the test is modified such that the implied quality

perception associated to failing increases, I can interpret this as a reduction of the “stigma of

failure”. On the other hand, if the test is modified such that passing gets more likely for any θ

(i.e., such that the induced τθ(µ2) increases for any θ), I can interpret this as “grade inflation”.

Decreasing the accuracy of a NFP test makes passing less likely and increases the quality per-

ception associated with failing. This allows for the interpretation that more participation is

optimally induced by reducing the stigma of failure and not by inflating grades (even though

this would be possible as well).

I come now to the question of how the informativeness of the agent’s private information

δ affects the optimal participation threshold. The grey area in Figure S-3 indicates which

participation thresholds are inducible; the red solid line illustrates the optimal participation

5



threshold.1 If the informativeness of the agent’s private signal is low, any participation threshold

θ∗ ∈ [θ(δ), θ(δ)) is inducible. As signals are spread out in a small interval around 1/2, the

worst possible quality perception associated to non-participation is quite high and the agent’s

signaling motive is weak. Fostering participation is costly for the principal in terms of test

accuracy. The principal prefers little participation in a relatively accurate test to a higher

participation in a much less accurate test. Thus, the optimal participation threshold lies close

to θ(δ). If the informativeness of the agent’s private signal is high, the agent’s signaling motive

is strong as the quality perception associated to non-participation is low. An unravelling effect

kicks in causing relatively high participation in an accurate test. As inducing participation for

private signals close to θ(δ) requires a very inaccurate test, fostering even more participation

is, again, very costly in terms of test accuracy. An accurate test and therewith the highest

inducible participation threshold is optimal. As inducing full participation is never optimal,

there is always a role for indirect learning through the agent’s participation decision.

3. Relation to problems with non-binary quality

Suppose the agent’s quality ω can assume three values, say Ω = {ω1, ω2, ω3} with 0 = ω1 <

ω2 < ω3 = 1. In an important class of economic environments, the principal’s and the agent’s

payoff depend only on the expected quality from the principal’s perspective.2 Let µ ∈ ∆(Ω)

denote now the principal’s posterior belief. µ̌(µ) ≡ Eµ[ω] describes then the expected quality

associated to the principal’s belief. I can write reduced-form payoffs as v̂(µ̌(µ)) and û(µ̌(µ)),

and I can impose on v̂ and on û the same assumptions that I imposed in my model with binary

quality. Suppose further that the agent’s private signal is a prior belief θ ∈ Θ with Θ ⊂ ∆(Ω).

Thus, when the agent has to take his participation decision, the expected quality from his

perspective is θ̌(θ) ≡ Eθ[ω]. When I impose assumptions that imply that the agent cares only

through θ̌(θ) about θ and that θ̌(θ) allows only for inferences about µ̌(µ), my binary problem

is strongly related to the non-binary problem.

The analysis of the non-binary problem is, however, somewhat more involved. A test and

a participation strategy induce a distribution of expected qualities µ̌ from the principal’s per-

spective, say τ̌ , and from the agent’s interim perspective, say τ̌θ. The principal’s test design

problem can then be transformed into the problem of designing a distribution of expected qual-

ities τ̌ . Yet besides the participation constraint and the Bayesian plausibility constraint that

arise also in the binary model, a “technical feasibility constraint” arises additionally in the

non-binary model. To see this, suppose that quality is ω1 = 0, ω2 = 1/2 and ω3 = 1 with

probability 1/3 each. Any induced distribution of expected qualities τ̌ has then expected value

1/2 (by Bayesian plausibility) and a support that is a subset of [0, 1] (because the expected

1I used Maple to derive the optimal participation threshold numerically.
2Payoffs with such a structure arise, for example, when the principal takes a decision to minimize the

quadratic distance between her decision and the actual quality and the agent cares only about the principal’s
decision.
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quality associated to each test result is a convex combination of ω1, ω2 and ω3). However, not

every distribution τ̌ with an expected value of 1/2 and such a support can be induced. As the

convex combination associated with at least one test result has to put positive weight on ω2, it

is for instance not possible to induce a distribution where µ̌1 = 0 and µ̌2 = 1 arise both with

probability 1/2.

Besides the additional technical issue that has to be handled, imposing an assumption on

the independence of information and test results conditional on quality may be more restrictive

in the non-binary model than in the binary model. In reasonable problems with non-binary

quality, this assumption is violated. Therefore, allowing for more general forms of private

information would be interesting as well. This would give rise to additional issues that make

the analysis less tractable (e.g., the existence of tests that induce participation behavior that

is non-monotonic in θ̌(θ)).
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