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Abstract

An agent who is imperfectly informed about his binary quality can voluntarily participate in

a test that generates a public signal. I study the design of the test that allows for optimal

learning of the agent’s quality when the agent strives for a high perception of his quality but is

averse towards perception risk. For a large class of reduced-form utility functions that reflect

these properties, the optimal test is binary and not subject to false positives. I uncover the

forces that drive this result and show how the problem with endogenous participation can be

transformed into a problem to that the concavification approach from the Bayesian persuasion

literature applies. Furthermore, for a non-reduced version of my model where the designer

estimates the agent’s quality but suffers either more from false positives or from false negatives,

I show that the same type of test is optimal.
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1. Introduction

Technological advances have in many areas improved the capability to reveal information

about an agent through testing procedures. In contrast to signaling and screening mechanisms

that were subject of intense study in the past, such procedures are in many environments

capable of revealing information that goes beyond what the agent knows himself. However,

either because a regulating agency saw a need to protect the agent or for some technical reason,

testing often requires the agreement of the agent. This article studies the design of the testing

procedure in such environments.

To fix ideas, think of the following examples: A genetic test can determine whether a patient

will develop a certain illness, but testing necessitates for legal reasons the formal agreement of

the patient. Big data analysis can be used to assess whether a bank is viable in a scenario that

is unknown to the bank, but the bank must grant access to the necessary data. Polygraphs

and fMRI scanners can be used to judge about the eligibility of a potential employee, but

using them requires the candidate’s agreement. Similar problems arise also in more classical

environments: The judge in an inquisitorial legal system controls the generation of information,

but she requires an imperfectly informed prosecutor to bring cases to court.1 Product testing

can reveal information about the safety of a product, but the imperfectly informed producer

has to apply for certification.2

In this kind of applications, the agent’s quality is either good (i.e., he is healthy/viable/

eligible/. . . ) or bad (i.e., he is ill/nonviable/ineligible/. . . ), but he is often only imperfectly

informed about his true quality. A test is any device that, if used, issues a public signal that

depends directly on the agent’s true quality.3 An accurate test perfectly reveals the agent’s

quality. It generates a positive result if the agent is good and a negative result if he is bad.4

Any binary test that is not accurate is subject to false positives, false negatives, or both.

Similar interpretations can be employed for non-binary tests. After the test is designed by the

principal, the agent decides upon participation. The principal uses the generated test result or

the agent’s decision not to participate to draw a Bayesian inference about the agent’s quality.

I consider a version of the model with stylized reduced-form utility specifications that depend

directly on this inference. In addition, I discuss a non-reduced version where the principal has

to take a decision and a class of utility functions with standard properties that is interesting

from an applied perspective.

In general, the principal strives for uncovering information about the agent’s quality. She

1Kamenica and Gentzkow (2011) discuss in their leading example the complementary problem where infor-
mation generation is controlled by an uninformed prosecutor.

2See Harbaugh and Rasmusen (2016) for a deeper discussion of the certification application.
3I am interested in the case where the generated information is always learned by the principal.

Matthews and Postlewaite (1985) compare an agent’s incentive to generate information through an accurate
test for voluntary and mandatory disclosure of the generated information. See also Farhi et al. (2013).

4Note that I fix the wording such that “positive” refers to the result that is better for the agent. For some
applications, the wording is interchanged. E.g., a positive HIV test is the result that is worse for the agent.
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dislikes false positives and false negatives. However, depending on the application, she may

dislike one type of error more than the other. The agent cares about how his quality is perceived

by the principal. He benefits when the perception is higher but he is in many problems averse

towards perception risk. For instance, such an aversion may be due to the Hirshleifer effect or

it may arise for psychological reasons.5

What makes the test design problem interesting is that there is no full unraveling under

an accurate test. The agent faces a trade-off: non-participation signals unfavorable private

information about his quality but participation comes along with a perception risk. The usual

unraveling argument fails as the imperfection of the agent’s private information limits how

adverse the inference associated to non-participation can be. Because of his aversion towards

perception risk, the agent with the worst possible private information strictly prefers to be

perceived as having the worst possible private information to his quality being perfectly revealed

by an accurate test. The relevance of this kind of effect was already observed by Stiglitz (1975):

“If individuals are very risk averse and not perfectly certain of their abilities, then

they may prefer to be treated simply as average rather than to undertake the chance

of being screened and labelled below average.”

Thus, even if there are no technical constraints that limit the test accuracy and accuracy is

costless, the principal may have an incentive to choose an inaccurate test to foster participation.

This gives rise to a number of questions: Is optimal learning achieved through an accurate

test? If not, what is it optimal to test for? Is the optimal test subject to false positives,

false negatives or both? How is this affected by whether the principal suffers more from false

positives or from false negatives?

My article has two main contributions. The first contribution is theoretical. I use the

version of my model with reduced-form utility specifications to uncover the forces that drive

the optimal test design. For a large class of reduced-form utility functions that reflect the

principal’s interest in learning and perception risk-aversion on the agent’s side, I find that a

single test structure is optimal: the optimal test is binary and not subject to false positives.

In the literature on Bayesian persuasion (Kamenica and Gentzkow, 2011) the sender chooses

a Bayes plausible distribution of beliefs to maximize her value function. Concavification meth-

ods can be used to solve this problem (see, e.g., Aumann and Maschler, 1995). Such an ap-

proach cannot be (directly) applied to my problem as two technical difficulties arise. First, the

principal cannot completely control the distribution of beliefs about the agent’s quality. This

distribution is jointly determined by her test design and the agent’s endogenous participation

behavior. Second, as the agent is privately informed, two different distributions of posterior

5According to Hirshleifer (1971), such an aversion can arise because the revelation of public information
takes away hedging opportunities. Moreover, in medical contexts, learning aversion arises often for psychological
reasons. An indicator for such an aversion is that participation rates in medical tests are often low even when
testing is costless. See Lyter et al. (1987) and Hull et al. (1988).
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beliefs are relevant instead of one.6 I show that it is possible to transform the problem in a way

such that the concavification approach applies nevertheless.

The second contribution is more applied. I discuss the non-reduced version of my model

where the principal has to estimate the agent’s quality but suffers either more from a high

estimate when it turns out that the agent is bad or from a low estimate when it turns out that

he is good. That is, either false positives or false negative are more costly for the principal.

Expectedly, tests that are not subject to false positives perform well when the principal suffers

more from false positives; more surprisingly, such tests turn out to be also optimal when the

principal suffers more from false negatives.

2. A model of test design with voluntary participation

2.1. The reduced model

A principal (she) wants to learn about the quality ω ∈ Ω ≡ {g, b} of an agent (he). The

agent’s quality is either good (ω = g) or bad (ω = b), but the agent is only imperfectly informed

about his quality. He knows that he is good with probability θ and bad with probability 1− θ.

The agent knows the value of θ whereas the principal knows only its distribution. θ is drawn

from a cumulative distribution function F (θ) that admits a strictly positive density f(θ) on

the support Θ ≡ [θ, θ] with 0 < θ < θ < 1.7 The assumption on the support of θ describes

my notion of imperfection of private information. As θ < θ, the agent is endowed with some

meaningful information about his quality. As θ > 0, he is never certain to be bad.8

A test π consists of a finite realization space S and a family of distributions {π(·|ω)}ω∈Ω

over S. I can restrict without loss of generality attention to informative tests (i.e., tests with

π(s|g) 6= π(s|b) for some s ∈ S) that are minimal (i.e., tests with π(s|g) + π(s|b) > 0 for all

s ∈ S). I call a test perfectly informative if for each s ∈ S either π(s|g) = 0 or π(s|b) = 0.

The timing is as follows: First, the principal chooses a test π. Second, nature draws θ and

ω. Third, the agent observes the principal’s test choice and his private signal θ. He decides

then between participating in the test (x = Y ) and not participating (x = N). Fourth, if the

agent decided to participate, nature draws a test result s ∈ S according to π(·|ω). I assume

that the test result s and the agent’s private signal θ are independently distributed conditional

on ω. Fifth, either the agent’s non-participation decision or the generated test result becomes

publicly observable. The principal forms a Bayesian belief about the agent’s quality and she

takes an action a ∈ A. Finally, payoffs realize. The principal’s payoff v(a, ω) depends on her

6In this respect, my problem is related to the Bayesian persuasion problem with heterogeneous priors in
Alonso and Câmara (2016a).

7An extension of my analysis to the case where the distribution of θ includes atoms and holes is straightfor-
ward but it would require a much more cumbersome notation.

8By assuming θ > 0, I restrict attention to the interesting cases. The test design problem is trivial for θ = 0.
I will discuss this in Subsection 4.1. The assumption that θ < 1 is not crucial but it simplifies the exposition of
my analysis. See Weiss (1983) for a similar notion of imperfection of private information.
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action and the agent’s quality whereas the agent’s payoff u(a) depends only on the principal’s

action.9,10,11

Since quality is binary, I can identify a belief about the agent’s quality with a probability

µ ∈ [0, 1] with that the principal believes the agent to be good. I will refer to this probability

as the principal’s quality perception. When the principal takes the action a∗(µ), reducing the

last stage of the game yields payoffs v̂(µ) = Eµ[v(a
∗(µ), ω)] and û(µ) = Eµ[u(a

∗(µ))].

My main results will shed light on the optimal test design for a class of reduced problem

where I directly impose assumptions on v̂(µ) and û(µ). I assume that û : [0, 1] → R is a

smooth function with û′ > 0, û′′ < 0 and û′′′ ≥ 0, and that v̂ : [0, 1] → R is a smooth function

with v̂′′ > 0 and v̂′′′ ≥ 0. I will give an example of a non-reduced problem that implies these

properties in Subsection 2.3.

The assumptions on the first two derivatives of the agent’s utility function û are essential

for the problems in that I am interested in. They capture that the agent likes his quality to be

perceived as better (û′ > 0) but dislikes perception risk (û′′ < 0). The assumption on the third

derivative (û′′′ ≥ 0) is useful for getting clear-cut results. Intuitively, it reflects an aversion

to downside risk in the sense that among any two quality perception lotteries with the same

expected perception and the same variance of perception, the agent prefers the lottery with

the better downside protection/greater potential for upside gain.12 All three assumptions are

satisfied for a large class of HARA utility functions including quadratic utility, cubic utility, ex-

ponential utility/CARA utility, logarithmic utility, and CRRA utility.13 I provide in Subsection

4.3 a specific (non-trivial) micro-foundation of the assumptions on the agent’s reduced form

utility functions. The properties derive there (under some conditions) from the assumption

that the agent is prudent in his monetary income.14

The assumption v̂′′ > 0 is essential for the problems in that I am interested in. Since updat-

ing is Bayesian, the release of any additional information about the agent’s quality transforms

the posterior quality perception distribution by a mean-preserving spread. The release of any

additional information increases the principal’s expected payoff if, and only if, v̂′′ > 0. Thus,

9The assumption that u(a) depends only on a is analogous to the assumption in the important special case in
Kamenica and Gentzkow (2011) where the sender’s payoff depends only on the expected state. It will together
with my assumptions on reduced-form utility functions that I introduce below imply that threshold participation
behavior occurs (Proposition 1). My main analysis will extend to more general payoff specifications u(a, ω) as
long as they do also induce threshold participation behavior. I will discuss this in more detail in Subsection 5.5.

10Implicit in the payoff specification is also that testing and getting tested is costless for the principal and
the agent. It will be a direct consequence of my solution approach that this is without loss of generality. See
the discussion in Subsections 5.2 and 5.4.

11Implicit in these payoff specifications is also that test accuracy is costless for the principal. This assumption
allows me to focus on the use of inaccurate tests for strategic reasons. Such an assumption is standard in the
information design literature. See Gentzkow and Kamenica (2014) for a notable exception.

12For a formal definition of downside risk and its relation to the third derivative, see Menezes et al. (1980).
13See Section 1 of the supplementary material for a parametrization of HARA utility and for a graphical

illustration of the part of the parameter space to that my analysis applies.
14See Kimball (1990) for a motivation of prudence in financial applications.
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v̂′′ > 0 captures that the principal is interested in learning. Like for the agent, the assumption

on the third derivative (v̂′′′ ≥ 0) reflects an aversion to downside risk and it is useful for getting

clear-cut results.15 I will explain in Subsection 4.3 how I can use specific structure to extend

my analysis to cases where this assumption is violated. An interesting special case that fits my

assumptions is v̂(µ) = (µ− EF [θ])
2. The principal’s ex ante expected payoff corresponds then

to the variance of the induced quality perception distribution.

2.2. Solution concept

My solution concept is an adaptation of principal-preferred Perfect Bayesian Equilibrium

to my reduced-form framework.

Updating. Given a test π and a participation strategy χ : Θ → {N, Y }, the principal can

draw inferences about the agent’s quality from two sources of information. First, she can use

the information revealed by the agent’s participation decision x to update her belief about the

agent’s private signal. This allows her to form an updated quality perception µx ∈ Θ.16 Second,

when the agent participates, she can use the information revealed by the test result s to draw

additional inferences. This leads to a quality perception µs ∈ [0, 1].

From the principal’s and from the agent’s interim perspective (after the agent chose x = Y

but before s is observed), the test leads to a distribution of quality perceptions. I denote a

distribution of quality perceptions by τ .17 The distribution τ faced by the principal differs from

the distribution τθ faced by the agent with private signal θ as the agent is better informed. I

say π and χ induce the distribution τ and the family of distributions {τθ}θ∈Θ if there exists

some µY ∈ Θ that is consistent with χ18 such that

µs =
π(s|g)µY

π(s|g)µY + π(s|b)(1− µY )
for all s, (1)

Supp(τ) = Supp(τθ) = {µs}s∈S for all θ,

τ(µ) =
∑

s:µs=µ

(π(s|g)µY + π(s|b)(1− µY )) for all µ, and (2)

15See Gossner and Steiner (2016) for a micro-foundation of such third derivative assumptions. They identify
non-reduced models that imply v̂′′′ < 0; non-reduced models that imply v̂′′′ > 0 can be identified in a similar
fashion.

16Technically, a belief about the agent’s private signal is an element of ∆(Θ) that can be described by a
cumulative distribution function Fx. Any Fx implies a quality perception µx = EFx

[θ] that lies in Θ. Only this
implied quality perception is relevant for my analysis.

17Technically, a belief about the agent’s quality is a distribution on Ω (i.e., an element of ∆(Ω)) and the test
induces a distribution on such distributions (i.e., an element of ∆(∆(Ω))). Since I can identify the former by a
quality perception µ, I can identify the latter by a distribution of quality perceptions τ .

18I.e., if χ prescribes that the decision x is taken with positive probability, then µx = EF [θ|χ(θ) = x]; if x
prescribes that the decision x is taken with probability zero, µx can assume any value in Θ.
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τθ(µ) =
∑

s:µs=µ

(π(s|g)θ + π(s|b)(1− θ)) for all µ and all θ. (3)

(1), (2) and (3) imply that τθ depends only through τ on the test design:

τθ(µ) =

(

θ

µY

µ+
1− θ

1− µY

(1− µ)

)

τ(µ).19 (4)

In need thus only to specify which distribution τ is induced. I can then infer from this the

family of distributions {τθ}θ∈Θ.

Participation. I say χ is induced by π if there exists a distribution τ that is induced by π

and χ and if there exists some µN ∈ Θ that is consistent with χ such that

χ(θ) = Y implies Eτθ [û(µ)] ≥ û(µN), and

χ(θ) = N implies Eτθ [û(µ)] ≤ û(µN).

Test design. The principal chooses a test π and a participation strategy χ that is induced

by π to maximize her ex ante expected payoff

PF [χ(θ) = Y ] · Eτ [v̂(µ)] + PF [χ(θ) = N ] · v̂(µN). (5)

Notice that (5) is completely pinned down by π and χ: The distribution τ that is induced π and

χ may only be subject to a degree of freedom when χ prescribes participation with probability

zero. µN may only be subject to a degree of freedom when χ prescribes non-participation with

probability zero. It will follow from my analysis that the principal’s maximization problem has

a solution. I will call any test that is part of such a solution optimal.

2.3. A non-reduced example: Estimation with symmetric error cost

Before I proceed with the analysis of my reduced-form model, I provide a non-reduced

example that reduces to an instance of my reduced-form model. Suppose the agent’s quality ω

determines whether his value (e.g., his productivity or the value of his product) is low or high,

say a∗b ∈ R+ or a∗g > a∗b . The principal is a certifier whose task it is to assess the agent’s quality.

She chooses an action a ∈ R+ that can be interpreted as an estimate of the agent’s expected

value. At some stage in the future, the agent’s quality comes to light and the principal suffers

a quadratic loss from inaccuracies in her estimate (e.g., due to reputation concerns):

v(a, ω) =

{

−(a− a∗g)
2 if ω = g

−(a− a∗b)
2 if ω = b

.

The agent benefits when he obtains a higher estimate (e.g., because he is paid the estimate by

a third party as a wage or a price), but he is risk-averse and prudent: u′(a) > 0, u′′(a) < 0 and

19A formal proof of this relationship can be found in the proof to Lemma 2 (a) where I use this property for
the first time. See Alonso and Câmara (2016a) for a similar property.
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u′′′(a) ≥ 0.

I have then Eµ[v(a, ω))] = −µ(a− a∗g)
2 − (1− µ)(a− a∗b)

2. This implies that the principal’s

optimal estimate corresponds to the Bayesian estimate of the agent’s value given the quality

perception µ: a∗(µ) = µa∗g + (1 − µ)a∗b . This gives rise to the reduced-form utility functions

û(µ) = u(a∗b + (a∗g − a∗b)µ) and v̂(µ) = −µ(1 − µ)(a∗g − a∗b)
2 that represent an instance of

my reduced model. In fact, the principal’s reduced-form utility function induces the same

preferences over tests as v̂(µ) = (µ − EF [θ])
2. Thus, the principal strives in this non-reduced

example to maximize the variance of the posterior quality perception distribution.20 I will

discuss the more involved non-reduced problem where one type of error is relatively more

costly for the principal in Subsection 4.3.

3. An illustrative example: Updating and trade-offs for binary tests that are not
subject to false positives

Binary tests that are not subject to false positives. For any binary test, I call the test result

that is relatively more likely to be obtained by a good agent (bad agent) the positive result

(negative result). A test is subject to false positives (false negatives) if a bad agent (good

agent) can obtain the positive result (negative result). Any binary test with π(s|b) = 0 for

some s ∈ S is not subject to false positives. The positive result allows then for the inference

that the agent is good. A parametrization of this class of tests is given by πNFP
ρ with S = {1, 2},

πNFP
ρ (1|g) = 1− ρ, πNFP

ρ (2|g) = ρ, πNFP
ρ (1|b) = 1 and πNFP

ρ (2|b) = 0. I will refer to this class of

tests as NFP tests and to the parameter ρ as the test accuracy. ρ = 0 describes a completely

noninformative test whereas ρ = 1 describes a perfectly informative test. The class of binary

tests that is not subject to false negatives can be introduced in an analogous fashion. I will

refer to this class as NFN tests. In the remainder of this section, I will motivate effects and

trade-offs that arise for NFP tests. It will follow from my analysis later on why this class of

tests is of particular interest.

Updating. When the principal chooses the test πNFP
ρ , her quality perception is µ2 = 1 after

observing the positive result and

µ1 =
(1− ρ) · µY

(1− ρ) · µY + 1 · (1− µY )
< 1 (6)

with µY = EF [θ|“participation”] after observing the negative result. When the test is not

used, she can still draw inferences about the agent’s quality through his participation behavior:

µN = EF [θ|“non-participation”].

20Harbaugh and Rasmusen (2016) measure information generation by applying a loss function to the error
of the public’s quality estimate. This example shows that the special case of my reduced model where the
principal strives to maximize the variance of the posterior quality perception distribution can be interpreted as
an adaptation of their utility specification with a quadratic loss function to my setting with a binary quality.
Quadratic loss functions are a standard assumption in sender-receiver games.
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(a) θ ∼ U[1/3, 2/3]

θ∗

θ

θ

ρ
0 1
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no participation

(b) θ ∼ U[1/6, 5/6]

Figure 1: Test accuracy and induced participation threshold [û(µ) = −(1− µ)2, π = πNFP
ρ ]

Trade-off associated with the participation decision. If the agent participates when he has

the private signal θ, the two test results are generated with the probabilities τθ(µ2) = ρθ

and τθ(µ1) = 1 − ρθ. The higher his private signal, the more likely the positive test result

is generated. If he does not participate, it does not depend on his private signal how he is

perceived. Thus, the agent has a stronger incentive to participate the higher his private signal.

Only threshold participation strategies can be induced.

When I denote the participation threshold by θ∗, non-participation allows the principal to

draw the inference µN = EF [θ|θ ≤ θ∗] whereas participation allows for the inference µY =

EF [θ|θ ≥ θ∗]. From the perspective of the agent, participation leads to an expected quality

perception of Eτθ [µ] = (1− ρθ)µ1 + ρθµ2. When the agent has the threshold signal θ = θ∗, this

can be written as

Eτθ∗ [µ] = (1− ρ)EF [θ|θ ≥ θ∗]
1− ρθ∗

1− ρEF [θ|θ ≥ θ∗]
+ ρθ∗ ≥ θ∗. (7)

Non-participation leads to a certain quality perception of µN ≤ θ∗. When the agent has the

threshold signal, he is on average perceived as better when he participates but he faces then a

perception risk.

Trade-off associated with the test accuracy choice. The test accuracy ρ determines for which

private signals the agent will participate. Figure 1 illustrates for two numerical examples how

participation decreases (i.e., the participation threshold increases) as the test accuracy increases.

To build some intuition for the effect of the test accuracy on the participation threshold, it is

illuminative to consider the polar cases where the test is accurate (ρ = 1) and very inaccurate

(ρ close to 0). Suppose first the test is accurate. Then, from the perspective of the agent

with any private signal θ, participation induces a fair quality perception lottery: the quality

perception is µ = 1 with probability θ and µ = 0 with probability 1 − θ. The lottery is non-

degenerate as the agent is uncertain about his quality. As the agent is averse to perception
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risk, participation leads to an expected payoff that is strictly smaller than û(θ). When the

agent does not participate, the principal cannot infer anything from his behavior that the agent

does not know himself. This limits how bad the principal’s perception of the agent’s quality

can be. The most adverse perception is that the agent has the worst possible private signal

θ = θ. As such a perception implies a certain utility of û(θ), the agent has a strict incentive

not to participate when his private signal θ is close to θ. Hence, an accurate test does either

induce no participation (see Figure 1(a)) or only partial participation (see Figure 1(b)). On

the other hand, when the test is very inaccurate, participation imposes almost no perception

risk on the agent. However, it allows the agent for any supposed participation threshold θ∗

to “significantly” improve how his quality is perceived on average at almost no “cost”.21 As a

consequence, there is full participation in any informative but sufficiently inaccurate test (see

Figures 1(a) and 1(b)). It follows that participation decreases—at least eventually—as the test

accuracy increases. This gives rise to the interpretation that participation can be fostered by

making the test subject to errors.22

4. Optimal test design

In the preceding section, I imposed an ad hoc restriction on the structure of the tests

that I considered. This gave me a one-dimensional test design problem that was suitable for

motivating effects. Most interesting is, however, the question of how the optimal test structure

does actually look like. This is the main objective of this article. Once I know this structure,

the principal’s design problem reduces to a much simpler, one-dimensional problem that is like

the problem that I discussed in the preceding section.

4.1. Inducible participation behavior

I come first to the question as to whether any given test induces some participation strategy

and which strategies can be induced.

Proposition 1 (Only threshold participation is inducible) Fix any informative test π.
(a) There exists a participation strategy χ that is induced by π. (b) If χ is induced by π, then
χ is a threshold participation strategy. More specifically, there exists then a θ∗ ∈ Θ such that
χ(θ) = Y if θ > θ∗ and χ(θ) = N if θ < θ∗.

Part (a) is not very surprising. The intuition for part (b) is as follows: Given any informative

test, test results associated with higher quality perceptions are good news in the sense of

21Participation in a very inaccurate test increases the expected quality perception from the perspective of
the agent by approximately EF [θ|θ ≥ θ∗]−EF [θ|θ ≤ θ∗]. The “significance” part of the statement derives from
the fact that the minimal value of EF [θ|θ ≥ θ∗] − EF [θ|θ ≤ θ∗] is bounded away from zero. Thus, no matter
which participation threshold is induced for a given ρ, participation increases the expected quality perception
from the perspective of the agent significantly. By contrast, the “cost” that the perception risk imposes on the
risk-averse agent vanishes as the test accuracy ρ approaches 0.

22In a certification context, De and Nabar (1991) show that a similar trade-off can arise with a perfectly
informed, risk-neutral seller who can voluntarily decide to get tested at a fee: an inaccurate testing technology
can foster participation relative to an accurate one.
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Milgrom (1981). As a higher private signal makes more favorable news more likely in the

sense of first-order stochastic dominance, participation is more attractive the higher the agent’s

private signal. Thus, only threshold participation behavior where the agent participates if, and

only if, his private signal is above some threshold θ∗ ∈ Θ can be induced.

A consequence of threshold participation behavior is that the inference that the principal

draws from any participation decision that is supposed to occur with positive probability has a

simple form: µY = EF [θ|θ ≥ θ∗] and µN = EF [θ|θ ≤ θ∗]. A specific class of threshold strategies

that will be useful in the subsequent proofs is defined by

χθ∗(θ) ≡ Y if θ ≥ θ∗ and χθ∗(θ) ≡ N otherwise.

The next question is which participation thresholds can be induced. I say a threshold θ∗ is

induced by a test if there exists a threshold strategy with this threshold that is induced by this

test. Only the inducement of thresholds θ∗ ∈ [θ, θ) is interesting from a design perspective. For

my subsequent analysis it will be useful to distinguish between thresholds that can be induced

by a perfectly informative test and ones that can only be induced by tests that are not perfectly

informative. I introduce the following notation:

Θ∗ ≡ {θ∗ ∈ [θ, θ)|threshold θ∗ is induced by some informative test}

Θ∗∗ ≡ {θ∗ ∈ [θ, θ)|threshold θ∗ is induced by some perfectly informative test}

The subsequent proposition establishes some useful properties of the sets Θ∗ and Θ∗∗. The

proof contains also a characterization of Θ∗ and Θ∗∗ in terms of the primitives of my model.23

As the exact structure of these sets will not be important for my subsequent analysis, I omit it

in the proposition.

Proposition 2 (Inducible thresholds) (a) The set of all thresholds θ∗ ∈ Θ that is induced
by some informative test is non-empty and compact. (b) θ /∈ Θ∗∗. (c) θ ∈ Θ∗\Θ∗∗.

Because the agent is imperfectly informed, perfect learning of his quality requires full par-

ticipation in a perfectly informative test. Part (b) establishes that perfect learning is generally

impossible (as was already motivated in the introduction). Part (c) has two important impli-

cations. First, it implies that some learning is generally possible. Second, it shows that the set

of all inducible participation thresholds is strictly enlarged by allowing for tests that are not

perfectly informative.

Two remarks on the role of my notion of imperfection of privation information for Propo-

sition 2 are in order: It is crucial for the first implication of Part (c) that the agent has some

meaningful private information (i.e., θ 6= θ). θ = θ would imply that there is no signaling

23Section 2 of the supplementary material contains an illustration of the sets Θ∗ and Θ∗∗ for an example.
The example is useful for building an intuition for what determines the sets Θ∗ and Θ∗∗.
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motive on the agent’s side. The sole effect of participation would be that additional, unbiased

information is generated. The risk-averse agent would not be willing to participate in any infor-

mative test rendering learning about his quality impossible. It is crucial for Part (b) that the

agent’s private signal is imperfect in the sense that he is never certain to be bad (i.e., θ 6= 0).

θ = 0 would imply that a full unraveling equilibrium exists for any perfectly informative test.24

Perfect learning would be possible.

4.2. Optimal test design in the reduced model

The ability to describe which participation thresholds are inducible allows me to tackle the

test design problem in two steps. First, I will derive in this subsection the test that optimally

induces any given participation threshold θ∗ ∈ Θ∗. Then, I will briefly discuss in Subsection

5.1 the problem of which participation threshold from Θ∗ it is optimal to induce. This two-step

approach will convey a better understanding of the underlying effects as it will separate the

parts of the derivation that rely on the primitives of the model from those that do not: A single

test structure will turn out to be optimal for all primitives of the model whereas the optimal

participation threshold will depend on the primitives.

Fix any θ∗ ∈ Θ∗. If θ∗ is inducible by a perfectly informative test (i.e., θ∗ ∈ Θ∗∗), it is

obvious that θ∗ is optimally induced by such a test. It remains thus only to study the optimal

inducement of thresholds that are not inducible by a perfectly informative test. The subsequent

lemma states how this problem can be simplified.

Lemma 1 (The inducement problem) Fix any θ∗ ∈ Θ∗\Θ∗∗ and define uθ∗ ≡ u(EF [θ|θ ≤
θ∗]). A test is optimal among all tests that induce the participation threshold θ∗ if it solves the
following program:

max
π

Eτ [v̂(µ)]

s.t. Eτθ∗ [û(µ)] = uθ∗

π and χθ∗ induce τ

The lemma shows that three intuitive simplifications are without loss of generality. First,

I only need to consider the principal’s expected payoff conditional on participation. Second, I

need only to consider µN = EF [θ|θ ≤ θ∗] even when full participation shall be induced. Third,

only the participation constraint of the agent with the threshold signal is relevant and I can

restrict attention to the case where it is binding. This allows me to interpret the simplified

problem as a problem between the principal and the “threshold agent”.

The program is reminiscent of the Bayesian persuasion problem in Kamenica and Gentzkow

(2011) with a constraint added.25 In the original Bayesian persuasion problem, a sender designs

24If θ = 0, the worst possible private information is verifiable by an accurate test. The reasoning in the
literature on information transmission with hard information applies to this case. See Grossman and Hart
(1980), Grossman (1981), Milgrom (1981), and Okuno-Fujiwara et al. (1990).

25In the previous working paper version of this article, I employed a less elegant strategy to solve the program
in Lemma 1 (see Rosar, 2016). I am grateful to an anonymous referee for pointing out how the solution of the
program can be simplified by transforming the problem into a concavification problem.
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a signal π to maximize the expectation of her value function v̂(µ) with respect to the distribution

τ of posteriors µ that is induced by the signal.26 Such problems can be solved by showing that

it is possible to maximize Eτ [v̂(µ)] directly over all Bayes plausible distributions of posteriors

(i.e., distributions τ with Eτ [µ] = µY ) and by applying then concavification methods. The

structure of the optimal signal depends on the properties of v̂.

The principal in my model corresponds to the sender in the persuasion problem; for a given

participation behavior, the test corresponds to the signal; a posterior corresponds to a quality

perception; and the principal’s reduced-form utility function corresponds to the sender’s value

function. The additional constraint in my problem does per se not cause any fundamental

problems as it can be handle through a Lagrangian approach. What makes my problem more

involved is that it depends on two different quality perception distributions: the objective

function depends on the quality perception distribution as perceived by the principal (i.e., τ)

whereas the participation constraint depends on the quality perception distribution as perceived

by the threshold agent (i.e., τθ∗). The following result allows me to transform the more involved

problem into a problem to which the techniques from Kamenica and Gentzkow (2011) can be

applied.

Lemma 2 (Transformation of the participation constraint) Fix any θ∗ ∈ Θ∗\Θ∗∗. (a)
If π and χθ∗ induce τ , then Eτθ∗ [û(µ)] = Eτ [ũθ∗(µ)] with

ũθ∗(µ) ≡

(

θ∗

µY

µ+
1− θ∗

1− µY

(1− µ)

)

û(µ) and µY = EF [θ|θ ≥ θ∗].

(b) ũθ∗(µ) is a smooth function with ũ′′

θ∗ < 0 and ũ′′′

θ∗ > 0.

Part (a) is a direct consequence of (4). By Part (b), the transformed reduced-form utility

function ũθ∗ inherits important properties of the original reduced-form utility function û. These

properties will be crucial for the structure of the optimal test. To determine this structure,

consider the Lagrangian with Lagrange multiplier λ on the participation constraint:

L(τ, λ) ≡ Eτ [ϕλ,θ∗(µ)− λuθ∗ ] with ϕλ,θ∗(µ) ≡ v̂(µ) + λũθ∗(µ). (8)

By the preceding lemmas, I need to solve the following Lagrangian problem with

max
π

L(τ, λ)

s.t. π and χθ∗ induce τ

for any λ ≥ 0. The optimal test will maximize a weighted sum of the principal’s and the

threshold agent’s expected utility. By a reasoning analogous to that in the Bayesian persuasion

literature, the test design problem has the same maximum as the following one-dimensional

26π, τ , µ and û are essentially the same objects in Kamenica and Gentzkow (2011) as in my model, but
Kamenica and Gentzkow allow these objects to be defined for a non-binary state space Ω.
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concavification problem:

max
τ

L(τ, λ)

s.t. Eτ [µ] = µY

Since ϕ′′′

λ,θ∗ > 0 for all λ > 0 by v̂′′′ ≥ 0 and Lemma 2 (b), it follows that either the distribution

that is implied by a completely non-informative test or a binary distribution τ ∗ with 1 ∈

Supp(τ ∗) is optimal. Since I know already from the construction of Θ∗ that θ∗ can be induced

by an informative test, the latter must be the case. As any Bayes plausible distribution τ ∗ with

1 ∈ Supp(τ ∗) is implied by some NFP test πNFP
ρ , I obtain the following result:

Proposition 3 (Optimal test design in the reduced model) Any participation threshold
θ∗ ∈ Θ∗ is optimally induced by a binary test that is not subject to false positives πNFP

ρ∗ . If
θ∗ ∈ Θ∗∗, the optimal test is perfectly informative (i.e., ρ∗ = 1). If θ∗ ∈ Θ∗\Θ∗∗, the optimal
test is subject to false negatives (i.e., ρ∗ ∈ (0, 1)).

To build a less technical intuition for the result, consider the case where û′′′ = 0. The

threshold agent cares then only about his expected value Eτθ∗ [µ] and the variance Vτθ∗ [µ] of the

quality perception distribution that he faces. As his expected perception has a positive impact

whereas his variance of perception has a negative impact on his expected payoff, expected value

and variance must co-move for different distributions τθ∗ for that the participation constraint

is satisfied. Intuitively, when the expected perception of the threshold agent increases, there

is more pooling between the good and the bad state and thus less information generation. If

v̂′′′ = 0, pooling as measured by Eτθ∗ [µ] is exactly what the principal strives to minimize.27 The

question is thus, which test that induces θ∗ minimizes the threshold agent’s expected perception.

As maximization of the the threshold agent’s expected perception corresponds to the min-

imization of his variance of perception, I need only to identify the test structure that imposes

the least variance on the threshold agent. As the threshold agent is good with a below average

probability, this is just the test structure that imposes the least variance of perception on a

bad agent. As a bad agent is not subject to any perception risk when he participates in a NFP

test, such a test structure is optimal.

It remains to argue why a NFP test remains optimal when û′′′, v̂′′′ ≥ 0. Principal and

threshold agent are then both averse to downside risk/like upside potential (see Menezes et al.,

1980). Roughly speaking, there is then an additional effect that increases the principal’s ob-

jective function and which makes the agent’s participation constraint less binding when the

support of the quality perception distributions moves to the right. As all pooling occurs al-

ready on the negative test result and the highest possible quality perception is associated with

the positive test result for a NFP test, this test structure remains optimal.

27If v̂′′′ = 0, the principal strives to maximize Vτ [µ] = Eτ [µ
2] − Eτ [µ]

2. Since Bayesian plausibility implies
that Eτ [µ] is constant, she strives to maximize Eτ [µ

2]. By (4), Eτ [µ
2] is a negative linear transformation of

Eτθ∗ [µ].
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When û′′′ ≥ 0 or v̂′′′ ≥ 0 is violated, there still exists an optimal test that is binary.28 This is

a direct consequence of the fact that I have to solve a one-dimensional concavification problem.

However, the optimal test may then be subject to false positives. I show in the next subsection

that a test that is not subject to false positives remains optimal for an interesting application

for that the third derivative assumptions are sometimes violated. Moreover, if ũ′′′

θ∗ < 0 and

v̂′′′ ≤ 0 is both true, it follows immediately from my solution approach that a test that is not

subject of false negatives is optimal. Yet as û′′′ < 0 does not imply û′′′

θ∗ < 0 (see (A.6) in the

proof of Lemma 2), it is less obvious for which primitives of the model this would be the case.

The following corollary establishes some properties of the optimal test.

Corollary 1 (Properties of the optimal test) Fix any θ∗ ∈ Θ∗ and consider all tests that
induce θ∗. The following is true for the test that is optimal from the principal’s perspective: (a)
It minimizes the expected quality perception of the threshold agent, Eτθ∗ [µ]. (b) If the Arrow-
Prat measure of absolute risk aversion −û′′(µ)/û′(µ) is sufficiently large for all µ ∈ [0, 1] and
û′′′ = 0, it minimizes the expected payoff of the agent conditional on that he has any above
average signal θ∗∗ > µY , Eτθ∗∗ [û(µ)].

Part (a) does formally establish that the optimal test minimizes the expected perception of

the threshold agent even when û′′′ 6= 0 or v̂′′′ 6= 0. Harbaugh and Rasmusen (2016) consider a

related problem in that the agent is perception risk-neutral. The principal’s only instrument to

foster participation is to increase the expected perception of the threshold agent. The corollary

shows that when the agent is imperfectly informed and perception risk-averse, non-trivial effects

are added. The principal can then also foster participation by reducing the threshold agent’s

perception risk and doing so is better for her than increasing the threshold agent’s expected

perception.

Part (b) is an auxiliary result that will be useful for discussing what changes when the prin-

cipal is able to offer a menu of tests (see Subsection 5.3). The result gives sufficient conditions

under that the NFP test minimizes the expected payoff of the agent conditional on that he has

any above average signal. To get an intuition, recall what the NFP test that induces θ∗ does.

There are three effects. First, it imposed little perception risk on the agent conditional that

he has a below average signal. Second, it implies that information generation works quite well.

Third, it implies that high quality perceptions are associated with both test results. Condi-

tional on that the agent has an above average signal, he dislikes the first effect, but he likes the

other two. His perception risk would, for instance, be reduced when θ∗ was induced by a NFN

test. Such a test imposes no perception risk on a good agent and thus the smallest possible

perception risk on any agent with an above average signal. By contrast, the agent likes the

second effect as it improves how well he is perceived on average and he also likes the inducement

28Kamenica and Gentzkow (2011) show in Proposition 4 of their Web Appendix that in their persuasion
problem, in that the designer is only subject to Bayesian plausibility, the optimal information structure requires
at most as many different signals as there exist states of the world. The optimality of a binary test here shows
that a similar result is obtained for my test design problem with an interim participation constraint.
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of high quality perceptions because of his aversion to downside risk. Under the condition in

the corollary, the first effect dominates the second effect and the third effect is mute.

4.3. Optimal test design in a non-reduced example: Estimation with asymmetric error cost

In Subsection 2.3, I motivated my reduced-form model with a non-reduced quality estimation

problem. In this problem, too high estimates (which follow from false positives) and too low

estimates (which follow from false negatives) caused symmetric error cost for the principal. I

relax now the symmetry assumption. Suppose that the principal’s non-reduced payoff is

v(a, ω) =

{

−γL(a− a∗g)
2 if ω = g

−γH(a− a∗b)
2 if ω = b

.

with γL, γH > 0 and γL 6= γH . To simplify the exposition, I will set henceforth a∗g = 1 and

a∗b = 0. As before, a can be interpreted as the principal’s estimate of the agent’s expected

value. If γH > γL (γH < γL), the principal suffers more from too high estimates (too low

estimates). This allows for the interpretation that false positives (false negatives) are more

costly.29 Everything else remains as in Subsection 2.3.

For every µ, the principal chooses her estimate a to maximize Eµ[v(a, ω)] = −µγL(a−1)2−

(1− µ)γH(a− 0)2. This leads to the optimal estimate

a∗(µ) =
µγL

µγL + (1− µ)γH
. (9)

While the principal’s optimal estimate corresponded to the Bayesian estimate of the agent’s

value µ when error cost are symmetric, her optimal estimate is biased when error cost are

asymmetric. If too high estimates are relatively more costly (γH > γL), she is biased towards

lower estimates (i.e., a∗(µ) < µ). If too low estimates are relatively more costly (γL > γH), she

is biased towards higher estimates (i.e., a∗(µ) > µ). The bias determines the curvature of the

optimal estimate.

Lemma 3 (Properties of the optimal estimate) (a) If γH > γL, then a∗′(µ) > 0, a∗′′(µ) >
0 and a∗′′′(µ) > 0. (b) If γL > γH , then a∗′(µ) > 0, a∗′′(µ) < 0 and a∗′′′(µ) > 0.

The optimal estimate implies the reduced-form utility functions

v̂(µ) = Eµ[v(a
∗(µ), ω)] = −

γLγHµ(1− µ)

µγL + (1− µ)γH
and (10)

û(µ) = u(a∗(µ)).

The subsequent lemma shows that v̂(µ) and û(µ) do not always satisfy all the assumptions that

I imposed on my reduced model.

29In Perez-Richet (2014), the receiver faces a related decision problem. However, his decision is binary and it
is the perfectly informed sender who designs the information generation technology.
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Lemma 4 (Properties of reduced-form utility functions) (a) Suppose γH > γL. Then,
v̂′′ > 0 and v̂′′′ > 0. If u is a CARA or a CRRA utility function that exhibits sufficiently strong
risk-aversion, then û′ > 0, û′′ < 0 and û′′′ > 0. If u is a CARA utility function that exhibits
sufficiently weak risk-aversion, then û′ > 0 and û′′ > 0. (b) Suppose γL > γH . Then, v̂′′ > 0
and v̂′′′ < 0. Moreover, û′ > 0, û′′ < 0 and û′′′ > 0.

Surprisingly, even though I allow for the cases where false positives and where false negatives

are relatively more costly, a NFP test performs well in both cases. In particular, a test that

avoids false positives is generally optimal when false negatives are more costly.

Proposition 4 (Optimal test design in the non-reduced problem) Under the conditions
of Lemma 4 where û′′ < 0, any inducible participation behavior is optimally induced by some
NFP test πNFP

ρ . Under the conditions of Lemma 4 where û′′ > 0, perfect-information generation
is possible with the perfectly informative NFP test πNFP

1 .

Consider first the case where too high estimates/false positives are more costly (i.e., γH >

γL). The principal’s reduced-form utility function satisfies then the assumptions of my reduced

model. However, the principal’s bias towards low estimates implies that the agent gets a quite

unfavorable estimate unless he is able to convince the principal that he is very likely to be good.

As a consequence, if the agent is risk-neutral in the estimate a, he benefits from information-

generation (i.e., û is convex). As long as risk-aversion is sufficiently weak, this effect does still

dominate. Perfect information generation is then possible with a perfectly informative test. On

the other hand, when risk-aversion is sufficiently strong, the results of my reduced model apply

directly. That is, any inducible participation threshold is optimally induced by a NFP test.

Consider next the case where too low estimates/false negatives are more costly (i.e., γL >

γH). Since the principal is biased towards high estimates, the agent gets a quite favorable

estimate unless the test reveals that he is very likely to be bad. This does even strengthen the

agent’s inherent aversion towards risk (i.e., û = u ◦ a∗ is even more concave than u). Yet as I

have v̂′′′ < 0 in this case, my sufficient condition for the optimality of a NFP test is violated

such that my analysis from the preceding subsection does not apply directly. I demonstrate in

the proof of Proposition 4 how I can use the specific structure that I imposed on the principal’s

utility function to extend the result in Proposition 3. It turns out that the additional perception

risk-aversion on the agent’s side that arises through the concavity of a∗ renders a NFP optimal

no matter how strong the agent’s initial risk-aversion is.

To get an impression of why the result extends form a somewhat more technical perspective,

consider the role of the third derivative assumptions. It is important for the proof of Proposition

3 that

ϕ′′′

λ,θ∗(µ) = v̂′′′(µ) + λũ′′′

θ∗(µ) > 0

for the “right” λ > 0 and for all µ. When v̂′′′ ≥ 0, both summands are for all λ > 0 and for all

µ individually positive. For this reason, the assumption that v̂′′′ ≥ 0 simplifies the analysis. If

this condition is violated, it depends on the relative size of v̂′′′ and û′′′

θ∗ for the relevant value
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of λ whether ϕ′′′

λ,θ∗ > 0 is true. v̂′′′(µ) < 0 stays without consequences for the sign of ϕ′′′

λ,θ∗(µ)

when ũ′′′

θ∗(µ) is large. This happens, in particular, to be the case when the agent is very averse

towards perception risk (see (A.6) in the proof to Lemma 2).

5. Discussion

5.1. Optimal participation behavior

I know from my analysis in Section 4 that only threshold participation behavior can be

induced (Proposition 1), which participation thresholds can be induced (see Lemma A2 in the

proof of Proposition 2), and that any participation threshold is optimally induced by a NFP

test (Proposition 3). If the principal wants to induce full participation for reasons that are

not modeled here explicitly, the unique NFP test that induces the threshold θ∗ = θ is optimal.

If not, it remains to determine which participation threshold it is optimal for the principal to

induce. My analysis so far reduces the test design problem to the following problem:

max
θ∗∈Θ∗

(1− F (θ∗))Eτ [v̂(µ)] + F (θ∗)v̂(EF [θ|θ ≤ θ∗])

s.t. πNFP
ρ(θ∗) and χθ∗ induce τ

ρ(θ∗) = 1 if θ∗ ∈ Θ∗∗

ρ(θ∗) solves Eτθ∗ [û(µ)] = û(EF [θ|θ ≤ θ∗]) if θ∗ ∈ Θ∗\Θ∗∗

Although the structure of the optimal test is quite simple, the effect of the participation

threshold θ∗ is complex. It determines simultaneously when the agent participates, with which

probabilities the different test results are generated, and which inferences are drawn from the

different possible observations. However, as the problem is one-dimensional, it can easily be

solved numerically for any primitives of the model. In Section 2 of the supplementary ma-

terial, I discuss the structure of the set of inducible participation thresholds and the optimal

participation threshold for the uniform-quadratic case.

5.2. The principal can mandate participation but testing is costly

A key assumption in my model was that the agent’s participation in the test is voluntary.

While this assumption is reasonable for some applications, the principal may be able to man-

date participation in others. Suppose that the principal can choose between voluntary and

mandatory participation but that she faces a cost κ > 0 of conducting the test; that is, suppose

that the principal strives to maximize

PF [χ(θ) = Y ] · (Eτ [v̂(µ)]− κ) + PF [χ(θ) = N ] · v̂(µN).

A completely informative test is obviously optimal under mandatory participation. It allows

for perfect learning of the agent’s quality. Nevertheless, voluntary participation may be better

for the principal as it saves on testing costs. In particular, if κ is sufficiently large, voluntary

participation is optimal. A nice feature of my two step solution approach is that the analysis

that leads to my main result remains valid for any κ. Hence, for any κ and for any participation

threshold that shall be induced, a NFP test is optimal.

18



5.3. The principal can offer a menu of tests

Suppose now that the principal can offer a menu of tests in that the agent can self-select

himself.30 This allows the principal to further exploit the agent’s signaling motive. My aim in

this subsection is to discuss what can learnt from my analysis of the problem with a single test

and in what respects the menu problem is more complicated.

It will suffice for my purposes to consider the case with two tests. I use the following

notation and wording: The menu of tests offered by the principal is {πt}t∈T with T ≡ {1, 2}.

The agent has to decide between non-participation (x = N) and participation in a test πt with

t ∈ T (x = t). The principal’s quality perception after observing the agent’s participation in

test πt is µt
Y and her quality perception after observing the test result s in test πt is µt

s. A menu

of tests {πt}t∈T and a participation strategy χ : Θ → {N} ∪ T induce families of distributions

of quality perceptions {τ t}t∈T and {τ tθ}θ∈Θ,t∈T . Like in the model with a single test, I can infer

τ tθ from τ t. What this means and how all other elements of my model are defined extends in

the obvious way.

Participation incentives. Suppose that χ is induced by the menu of tests {πt}t∈T and

suppose that {τ t}t∈T is induced by χ and {πt}t∈T . Like in the model with a single test, the

agent’s expected payoff from participating in any informative test πt, Eτ t
θ
[û(µ)], is linear and

strictly increasing in θ (see Lemma A1 in the appendix). When I denote the slope by lt, this

corresponds to l1, l2 > 0. Suppose without loss of generality that l1 ≤ l2. Two implications of

this are important. First, like before, there exists a threshold θ∗ ∈ [θ, θ] such that the agent

participates in some test if θ > θ∗ and does not participate if θ < θ∗. Second, if l1 < l2, the

agent does strictly prefer participating in test π1 (test π2) when his private signal is smaller

(larger) than some threshold θ∗∗; if l1 = l2, the agent is indifferent between participating in test

π1 and test π2.31

Optimal inducement of a given threshold participation behavior. Suppose the thresholds θ∗

and θ∗∗ with θ ≤ θ∗ < θ∗∗ < θ are inducible by some menu of tests. This represents the most

interesting case where both tests are used with positive probability for an interval of signals.

My analysis in Subsection 4.2 allows for some conclusions about the structure of the test that

optimally induces θ∗ and θ∗∗. The two tests give rise to two participation constraints. The first

constraint is as in the original problem:

Eτ1
θ∗
[û(µ)] = u1 with u1 ≡ û(EF [θ|θ ≤ θ∗]).

30Bar et al. (2012) study the enrollment of students who differ in taste and quality in courses of different
difficulty. They investigate the effect of providing information about the course difficulty to employers but not
the design of course difficulties that maximizes information generation. Kolotilin et al. (2016) allow persuasion
mechanisms to condition on announcements of a privately informed receiver in a Bayesian persuasion framework
that has a different structure than my transformed problem.

31This case is analogous to the case where the principal offers a single completely uninformative test. A
non-threshold participation behavior may then arise.
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The second constraint corresponds to

Eτ2
θ∗∗

[û(µ)] = Eτ1
θ∗∗

[û(µ)].32

If Eτ1
θ∗∗

[û(µ)] was constant, say u2, the problems of designing the first test π1 and the second

test π2 were independent. It would immediately follow from my analysis in Subsection 4.2 that

a menu of two NFP tests is optimal. However, the “outside option” of the second test design

problem u2 depends typically on the design of the first test. If the outside option of the second

problem is minimized by the NFP test that solves the first problem, a menu of two NFP tests

would still be optimal. I give sufficient conditions for this in Corollary 1 (b). However, as I

motivated at the end of Subsection 4.2, this will only be the case if the agent’s aversion to

perception risk is sufficiently stronger than his signaling motive and his downside risk aversion.

If this is not the case, it may be optimal to choose a test that is subject to false positives as

the first test to relax the outside option that is relevant for the second test design problem. It

is always optimal to choose a NFP test as the second test.

5.4. The agent is perfectly informed and/or risk-neutral in conjunction with costly participation

The analysis of my main result in Subsection 4.2 does not rely on the assumption that the

agent’s private information is imperfect. It depends only on that the threshold agent has a below

average signal. Moreover, it extends under mild additional assumptions on v̂ to the case where

the agent is perception risk-neutral.33 However, the two assumptions rendered the analysis in

Subsection 4.2 relevant. They were responsible for the emergence of an endogenous participation

constraint that prevented full unraveling under a perfectly informative test. If a participation

constraint arises for other reasons, my main analysis applies also to problems where the agent is

perfectly informed and/or cares only about expected perception. For instance, such a constraint

could arise like in Harbaugh and Rasmusen (2016) where the agent suffers an exogenously given

cost from participating.

5.5. The agent’s payoff depends directly on quality

Suppose next that the agent’s non-reduced payoff is u(a, ω) instead of u(a). Then the agent’s

reduced-form payoff is given by ûθ(µ) = Eµ[u(a
∗(µ), ω)|θ]. In contrast to the original model,

it may depend not only on the principal’s quality perception but also on the agent’s private

signal θ as he can use this information to update his belief about ω. I can impose for each

θ ∈ Θ assumptions on reduced-form payoffs that are analogous to the assumption in my original

model: ûθ : [0, 1] → R is a smooth function with û′

θ > 0, û′′

θ < 0 and û′′′

θ ≥ 0. An interesting

32Notice that this is the only constraint that is necessary to induce that the agent strictly prefers π1 over π2 if
θ < θ∗∗ and π2 over π1 if θ > θ∗∗. l1 < l2 follows automatically from the indifference condition, µ1

Y < θ∗∗ < µ2

Y ,
and strict monotonicity of Eτ t

θ
[û(µ)] in θ.

33This is because the auxiliary function ũθ∗ that is key for the analysis is still strictly concave when û′′ = 0.
However, since ũ′′′

θ∗ = 0 when û′′ = 0, my reasoning in the proof of Proposition 3 would require assuming v̂′′′ > 0
instead of v̂′′′ ≥ 0.

20



special case of the generalized framework reflects complementarities between the agent’s actual

quality and how good his quality is perceived by the principal. ûθ is then increasing in θ.

When ûθ depends on θ, the proof of Proposition 1 may be affected. I.e., the induced

participation behavior may not be a threshold participation behavior anymore. However, if

the specific structure of ûθ is such the agent has still stronger incentives to participate in any

informative test the higher his private signal, then the entire remaining analysis in Section 4

stays valid. This is a direct consequence of the fact that the remaining analysis depends only on

the properties of ûθ for a fixed θ and that these properties are assumed to be as in the original

model. In particular, a NFP test remains optimal.

6. Literature

The classic literature on education observed already that signaling and testing are two

important channels of learning. Spence (1973) focuses on the signaling role of education. Arrow

(1973) and Stiglitz (1975) point to the role of schooling as an information generating device

and a costly signal at the same time. Weiss (1983) and Alós-Ferrer and Prat (2012) take an

information generation technology as given and study the incentives to engage in costly signaling

prior to information generation. My article is concerned with the design of an information

generation technology that optimally exploits signaling incentives.

My article contributes mainly to the literature on information design in sender-receiver

games. I study a problem where the information structure is controlled by the receiver and a

constraint derives from voluntary participation of the privately informed sender.

The literature on Bayesian persuasion studies the design of the information structure by

an uninformed sender. In a seminal contribution, Kamenica and Gentzkow (2011) study this

problem for a general class of environments.34 Bayes’ Law restricts the expected value of

the posterior belief but the design of the information structure is not subject to any further

constraints. As a concavification approach is feasible for this problem, it has a simple solution

that can be extended into various directions.35 My analysis requires techniques that can cope

with an additional constraint that derives from the designer’s inability to unilaterally impose an

information structure and that depends on a different distribution of beliefs than the designer’s

objective function.

Some articles investigate persuasion problems where the sender is already informed at the

design stage (e.g., Perez-Richet, 2014; Gill and Sgroi, 2012; Li and Li, 2013). The information

34See also Rayo and Segal (2010) and Kolotilin (2015). See Kolotilin (2016) and Kolotilin et al. (2016) for
problems where the receiver possesses private information about which decision is optimal for the sender.
Persuasion problems where the sender engages in specific kinds of market interaction after the disclosure of
information are studied by Ostrovsky and Schwarz (2010) (matching markets) and Goldstein and Leitner (2015)
(banking).

35This includes the disclosure of information by many senders (Gentzkow and Kamenica, 2017), the interpre-
tation of information by many receivers (Wang, 2013; Alonso and Câmara, 2016b; Taneva, 2016), heterogeneity
in priors (Alonso and Câmara, 2016a), and costly information structures (Gentzkow and Kamenica, 2014).
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structure is then jointly determined by the sender’s information generation technology choice

and the signaling effect that is associated with it.36 A related effect arises also in my article.

The information structure is jointly determined by the information generation technology and

the participation behavior that it implies.

In problems where the information structure is controlled by the receiver, participation of

a privately informed sender is often an issue. Most closely related to my article is independent

work by Harbaugh and Rasmusen (2016). Like me, they are interested in information genera-

tion when a constraint derives from voluntary participation. In contrast to me, they model the

sender differently such that different incentive problems arise: he is perfectly informed about

his continuous quality, risk-neutral with respect to how his quality is perceived, and he has

to bear an exogenously given fixed cost when he participates. Manipulating how a partici-

pating sender’s quality is perceived on average is the only instrument for setting participation

incentives. In my article, risk-aversion makes participation endogenously costly and there are

different ways to induce participation. Perception risk considerations, which are mute in their

article, are the central theme in mine. In a less related article, Perez-Richet and Prady (2012)

study similar channels of learning as I do. The sender, who is perfectly informed about his

binary quality, chooses the cost of test accuracy (“complexity”) and the receiver chooses the

test accuracy (“the level of understanding”). In contrast to my article, signaling occurs before

the test design and tests are restricted to a specific one-dimensional class.

Schweizer and Szech (2014) and Caplin and Eliaz (2003) study test design problems in medi-

cal contexts with anticipatory costs of learning. In Schweizer and Szech (2014), a doctor designs

a test to maximize the expected utility of his patient. Since participation is no issue, the con-

cavification approach does apply directly. For a reasonable class of preferences, an inaccurate

binary test that is not subject to false positives is optimal. Caplin and Eliaz (2003) study the

design of a pass-fail test that is capable of stopping the spread of HIV when participation is

voluntary and agents condition their sexual matching behavior on the generated information.

Unfavorable test results can be hidden and agents possess no private information. Setting par-

ticipation incentives may require the test to be inaccurate. Stopping the spread of the disease

requires that the test is never passed by an agent who is actually infected. The same test

structure that is optimal in my article is for different reasons optimal in these articles.

Benôıt and Dubra (2004) discuss the preferences of a sender with the median signal about

two different imperfectly informative signals. They argue that he may prefer the signal that

generates less information even though he would prefer his information to be perfectly revealed.

There is no signaling effect and no test design in this paper, but it shares with me the effect

36For a (potentially) unconstrained and a constrained interim design problem where the sender is perfectly
informed about his binary type, Perez-Richet (2014) and Gill and Sgroi (2012) find that only pooling equilibria
can arise. By contrast, signaling can occur in Li and Li (2013) where the sender faces a constrained interim
design problem and has imperfect binary information. Other constrained interim design problems are studied
in Titman and Trueman (1986), Gill and Sgroi (2008) and in Section 4 of Daley and Green (2014).
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that a party that likes information generation prefers a tests that is less accurate than possible.

Some strands of literature are related to my article but differ more strongly. One branch

of the test design literature studies the incentive effects of tests on effort provision (e.g.,

Dubey and Geanakoplos, 2010). The literature on certification studies the design of the infor-

mation structure by a profit maximizing intermediary. This design goal implies very different

effects. For instance, in the seminal contribution by Lizzeri (1999), the certifier can capture

the entire informational surplus in the market despite revealing no information. That endoge-

nous participation affects the value of non-participation is also important in Tirole (2012) and

Philippon and Skreta (2012), who analyze mechanism design problems in the context of govern-

ment interventions in financial markets. Milgrom and Weber (1982) and Ottaviani and Prat

(2001) identify environments in that some player has an interest in the public revelation of

information. I take such an interest as given and study the problem where the information

structure cannot be unilaterally imposed by such a player.

7. Conclusion

I have studied optimal test design under voluntary participation of an imperfectly informed,

perception risk-averse agent when the principal benefits from information. Only threshold

participation behavior where the agent participates when his information is sufficiently favorable

can be induced. For a large class of reduced-form utility functions and for any participation

threshold that shall be induced, my main result shows that a binary test that is not subject

to false positives is optimal. The probability of false negatives serves as an instrument to

foster participation. Learning about the agent’s quality is generally imperfect either due to less

than full participation, inaccuracy of the optimal test, or both. My main result can also be

interpreted as a foundation for the use of simple testing procedures. Furthermore, I have shown

that a binary test that is not subject to false positives is optimal for a class of non-reduced

problems where the principal has to estimate the agent’s quality and suffers from asymmetric

error cost. Interestingly, even when the principal suffers more from false negatives, a test that

avoids false positives is optimal.

A rough intuition for my main results is the following: Learning about the quality of an

imperfectly informed agent comes along with imposing a perception risk on him. However, the

risk faced by the agent differs depending on his private information. For example, a test that

is not subject to false positives imposes little risk on the agent when it is relatively likely that

he is bad; a test that is not subject to false negatives imposes little risk on the agent when

it is relatively likely that he is good. By choosing a test structure that imposes less risk on

the agent when he is bad, the participation constraint of the agent with the threshold signal,

who is relatively likely to be bad, is relaxed. This allows it to increase the accuracy of the test

strongly enough such that the agent with the threshold signal is perceived on average as worse.

As this is just what improved learning corresponds to, a binary test that is not subject to false

positives is optimal because it imposes the smallest possible risk on a bad agent.
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I find two extensions of my model particularly interesting. In the first extension, quality

is non-binary. It may then under certain conditions still be possible to reduce the test design

problem into a concavification problem, but as this problem is then multi-dimensional, deriving

the structure of the optimal test becomes more involved. Moreover, private information may

then have a more subtle effect on participation incentives.37 In the second extension, the

principal can use monetary transfers between participants and non-participants as an additional

instrument to set participation incentives and—if I allow also for the extension that I discussed

in Subsection 5.3—also to set incentives for the agent to select into different tests. Studying the

generalized problem would allow it to assess the relative importance of different instruments

that can be used to foster participation.38
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Appendix A. Proofs

Proof of Proposition 1

I first prove an auxiliary result.

Lemma A1 If τ is induced by an informative test π and a participation strategy χ, then
Eτθ [û(µ)] is continuous and strictly increasing in θ.

Proof. Fix any informative test π and any participation strategy χ. Let τ be induced by π
and χ. Suppose without loss of generality that S = {1, . . . , n}. By (3),

Eτθ [û(µ)] = θ
∑

s∈S

(π(s|g)− π(s|b))û(µs) +
∑

s∈S

π(s|b)û(µs).

37See Section 3 of the supplementary material for a discussion of the relation of my model to a problem where
quality is non-binary but principal and agent care only about the expected quality as perceived by the principal.

38Such an extension would make the design problem more closely related to non-standard mechanism de-
sign problems that blend information design with mechanism design (see, e.g., Calzolari and Pavan, 2006a,b;
Bergemann and Pesendorfer, 2007; Eső and Szentes, 2007; Pancs, 2014).
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Since this expression is linear in θ, I need only to show that the coefficient of θ is strictly
positive. I can rewrite this coefficient in the following way:

∑

s

(π(s|g)− π(s|b))û(µs) =
∑

s′

(

π(s′|g)
∑

s′′

π(s′′|b)− π(s′|b)
∑

s′′

π(s′′|g))û(µs′

)

=
∑

s′

∑

s′′>s′

(π(s′|g)π(s′′|b)− π(s′|b)π(s′′|g))û(µs′)

+
∑

s′

∑

s′′<s′

(π(s′|g)π(s′′|b)− π(s′|b)π(s′′|g))û(µs′)

=
∑

s′

∑

s′′>s′

(π(s′|g)π(s′′|b)− π(s′|b)π(s′′|g))(û(µs′)− û(µs′′))

It follows from (1) and û′ > 0 that the sign of û(µs′) − û(µs′′) corresponds to the sign of
π(s′|g)π(s′′|b) − π(s′|b)π(s′′|g). This implies that each summand of the coefficient is weakly
positive. Since π is informative, µs′ 6= µs′′ must be true for some s′, s′′. This implies that there
exists at least one summand that is strictly positive. This proves the result. q.e.d.

(a) I define first a specific class of threshold participation strategies: For any θ∗ ∈ [θ, θ)
define χ̂θ∗(θ) = Y if θ ≥ θ∗ and χ̂θ∗(θ) = N if θ < θ∗; for θ∗ = θ define χ̂θ∗(θ) = N . Let
{τθ,θ∗}θ∈Θ denote the family of distributions that is induced by the given informative test π and
the participation strategy χ̂θ∗ with µY = EF [θ|θ ≥ θ∗] from the perspective of the agent. To
prove the result, it suffices to show that there exists a θ∗ such that χ̂θ∗ is induced by π with
µN = EF [θ|θ ≤ θ∗] and µY = EF [θ|θ ≥ θ∗]. I distinguish three cases:

Case 1: Eτθ,θ [û(µ)] ≥ û(EF [θ|θ ≤ θ]). By the supposition, the agent has at least a weak
incentive to participate when his private signal is θ = θ and the supposed participation strategy
is χ̂θ. This implies by Lemma A1 that he has a strict incentive to participate if θ > θ. Hence,
χ̂θ is induced by π.

Case 2: Eτ
θ,θ
[û(µ)] ≤ û(EF [θ|θ ≤ θ]). By the supposition, the agent has at least a weak

incentive not to participate when his private signal is θ = θ and the supposed participation
strategy is χ̂θ. This implies by Lemma A1 that he has a strict incentive not to participate if
θ < θ. Hence, χ̂θ is induced by π.

Case 3: Eτθ,θ [û(µ)] < û(EF [θ|θ ≤ θ]) and Eτ
θ,θ
[û(µ)] > û(EF [θ|θ ≤ θ]). Continuity of F

and of û implies that Eτθ∗,θ∗ [û(µ)] and û(EF [θ|θ ≤ θ∗]) are both continuous in θ∗. This and
the supposition allow me to apply an Intermediate Value Theorem. I obtain that there exists
a θ∗ ∈ (θ, θ) such that Eτθ∗,θ∗ [û(µ)] = û(EF [θ|θ ≤ θ∗]). That is, the agent is indifferent between
participating and not participating when his private signal is θ∗ and the supposed participation
strategy is χ̂θ∗ . It follows from Lemma A1 that the agent has a strict incentive to participate
for any signal θ > θ∗ and a strict incentive not to participate for any signal θ < θ∗. Hence, χ̂θ∗

is induced by π.

(b) Suppose τ is induced by π and χ. Eτθ [û(µ)] is by Lemma A1 strictly increasing in θ.
Since û(µN) does not depend on θ, the agent has a strictly larger incentive to participate the
higher his private signal. Hence, if π induces χ, χ must be a threshold strategy where the agent
participates for an upper interval of private signals. q.e.d.

Proof of Proposition 2

Before I prove the properties in the proposition, I characterize the sets Θ∗ and Θ∗∗ in terms of
the primitives of the model.
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Lemma A2 (a) Θ∗ = {θ∗ ∈ [θ, θ)|(1 − θ∗) · û(0) + θ∗ · û(1) ≤ û(EF [θ|θ ≤ θ∗])}. (b) Θ∗∗ =
{θ∗ ∈ (θ, θ)|(1− θ∗) · û(0) + θ∗ · û(1) = û(EF [θ|θ ≤ θ∗])}.

Proof. (a) Step 1: If (1−θ∗)·û(0)+θ∗ ·û(1) > û(EF [θ|θ ≤ θ∗]) with θ∗ ∈ [θ, θ), then there exists
no informative test that induces the threshold θ∗. Assume to the contrary that there exists an
informative test π that induces a threshold participation strategy χ with the threshold θ∗ even
though

(1− θ∗) · û(0) + θ∗ · û(1) > û(EF [θ|θ ≤ θ∗]) (A.1)

and θ∗ ∈ [θ, θ). Let τ be induced by π and χ. Notice that by û′′ < 0 and Jensen’s inequality,
(A.1) can only hold if θ∗ > θ. By consistency of µN and µY with χ,

µN = EF [θ|θ ≤ θ∗] and µY = EF [θ|θ ≥ θ∗]. (A.2)

The threshold agent’s expected payoff from participation is Eτθ∗ [û(µ)]. By û′′ < 0 and Jensen’s
inequality, I obtain

Eτθ∗ [û(µ)] ≥ Eτθ∗ [(1− µ)û(0) + µû(1)]

= (1− Eτθ∗ [µ])û(0) + Eτθ∗ [µ]û(1). (A.3)

Furthermore, I have

Eτθ∗ [µ]− θ∗ =
∑

s

(π(s|g)θ∗ + π(s|b)(1− θ∗))µs −
∑

s

π(s|g)θ∗

=
∑

s

(π(s|g)θ∗ + π(s|b)(1− θ∗))
π(s|g)µY

π(s|g)µY + π(s|b)(1− µY )

−
∑

s

π(s|g)µY + π(s|b)(1− µY )

π(s|g)µY + π(s|b)(1− µY )
π(s|g)θ∗

=
∑

s

π(s|g)π(s|b)(µY − θ∗)

π(s|g)µY + π(s|b)(1− µY )
≥ 0. (A.4)

The first equality follows from (3) and from writing θ∗ in a more complicated way. The second
equality follows from using (1). The third equality follows from simplifying. The inequality
follows from (A.2). By û′ > 0 and (A.4), the right-hand side of (A.3) exceeds the left-hand side
of (A.1) at least weakly. I obtain from this and from (A.2) that

Eτθ∗ [û(µ)] > û(µN).

Since Eτθ [û(µ)] is linear in θ and thus continuous, it follows from the strict inequality that
the agent has a strict incentive to participate if his private signal is slightly smaller than θ∗.
Contradiction.

Step 2: If (1 − θ∗) · û(0) + θ∗ · û(1) ≤ û(EF [θ|θ ≤ θ∗]) with θ∗ ∈ [θ, θ), then there exists
an informative test that induces θ∗. Consider any θ∗ ∈ [θ, θ) for that the inequality holds. Let
{τθ,ρ}θ∈Θ denote the family of distributions that is induced by πNFP

ρ and χθ∗ from the agent’s
perspective. By consistency, µY = EF [θ|θ ≥ θ∗]. By Lemma A1, sufficient for the inducement
of χθ∗ by πNFP

ρ is that there exists a test accuracy ρ ∈ (0, 1] and a µN ∈ Θ that is consistent

with χθ∗ such that the participation constraint of the agent with the threshold signal θ∗ ∈ [θ, θ)
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is binding. Consider µN = EF [θ|θ ≤ θ∗]. When the agent with the threshold signal participates,
his expected payoff is

Eτθ∗,ρ [û(µ)] = (1− ρθ∗) · û(
µY − ρµY

1− ρµY

) + ρθ∗ · û(1)

by (1) and (3). When the test is perfectly informative (i.e., ρ = 1), this becomes

Eτθ∗,1 [û(µ)] = (1− θ∗) · û(0) + θ∗ · û(1).

Since this is weakly smaller than û(µN) by the supposition, the agent has at least a weak
incentive not to participate in a perfectly informative test when he has the threshold signal.
On the other hand, when the test is completely uninformative (i.e., ρ = 0), I get

Eτθ∗,0 [û(µ)] = û(µY ).

Since û(µY ) > û(µN), the agent has a strict incentive to participate in a completely noninfor-
mative test when he has the threshold signal. These two observations together with the fact
that Eτθ∗,ρ [û(µ)] is continuous in ρ allow me to apply an Intermediate Value Theorem. I obtain
that there exists some ρ∗ ∈ (0, 1] such that the participation constraint of the agent is binding
when he has the threshold signal.

(b) Step 1: There exists no perfectly informative test that induces θ∗ = θ. Assume to
the contrary that θ ∈ Θ∗∗. There exists then a perfectly informative test π and a threshold
participation strategy χ with threshold θ such that π induces χ. This means that there exists
a µN ∈ Θ that is consistent with χ and a distribution τ that is induced by π and χ such that

Eτθ [û(µ)] ≥ û(µN). (A.5)

Since the test is perfectly informative, Eτθ [û(µ)] = θû(1) + (1 − θ)û(0). By û′′ < 0, θ ∈ (0, 1)
and Jensen’s inequality, Eτθ [û(µ)] < û(θ). Since û(θ) ≤ û(µN) for all µN ∈ Θ, I obtain a
contradiction to (A.5).

Step 2: If (1 − θ∗) · û(0) + θ∗ · û(1) 6= û(EF [θ|θ ≤ θ∗]) with θ∗ ∈ (θ, θ), then there exists no
perfectly informative test that induces the threshold θ∗. It follows from Part (a) that there exists
no perfectly informative test that induces θ∗ ∈ (θ, θ) if (1−θ∗)·û(0)+θ∗ ·û(1) > û(EF [θ|θ ≤ θ∗]).
It remains thus only to show that this is also not possible for the reverse inequality.

Assume to the contrary that there exists a perfectly informative test π that induces a
threshold participation strategy χ with threshold θ∗ ∈ (θ, θ) even though

(1− θ∗) · û(0) + θ∗ · û(1) < û(EF [θ|θ ≤ θ∗]).

By consistency of µN with χ, µN = EF [θ|θ ≤ θ∗]. Suppose τ is induced by π and χ. By Lemma
A1 and θ∗ ∈ (θ, θ), necessary for the inducement of χ by π is that the agent’s participation
constraint is binding when he has the threshold signal. When the agent has the threshold
signal, his expected payoff from participation is

Eτθ∗ [û(µ)] = (1− θ∗)û(0) + θ∗û(1).

Since the preceding observations and the supposition imply that the agent has a strict incentive
not to participate when he has the threshold signal, I obtain a contradiction.

Step 3: If (1 − θ∗) · û(0) + θ∗ · û(1) = û(EF [θ|θ ≤ θ∗]) for θ∗ ∈ (θ, θ), then there exists a
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perfectly informative test that induces θ∗. This is a direct consequence of the proof of Step 2 in
Part (a). q.e.d.

I come now to the proof of the three statements in the proposition.

(b) This is Step 1 in the proof to Lemma A2 (b).

(c) By Lemma A2 (a), θ∗ = θ is inducible if (1− θ) · û(0) + θ · û(1) ≤ û(θ). It follows from
û′′ < 0 and Jensen’s inequality that this is the case. Since it follows from Part (b) that θ is not
inducible by a perfectly informative test, I obtain the result.

(a) First observe that non-participation is always inducible. If the principal believes that
the agent participates only if he has the worst possible private signal, χ(θ) = N is induced by
any test πNFP

ρ with ρ sufficiently close to zero. Thus, the set of all thresholds θ∗ ∈ Θ that is

inducible by some informative test is Θ∗ ∪ {θ}. This set is obviously non-empty. Compactness
follows directly from the characterization of Θ∗ in Lemma A2 (a) and the fact that θ is generally
inducible. (Notice that Θ∗ may only be non-closed because θ is missing.) q.e.d.

Proof of Lemma 1

Fix any θ∗ ∈ Θ∗\Θ∗∗. I distinguish two cases.

Case 1: θ∗ ∈ (θ, θ). It follows from Lemma A1 that bindingness of the participation
constraint of the agent with the threshold signal is necessary and sufficient for the inducement of
the participation threshold θ∗. Since the participation constraint must be binding, it is without
loss of generality to restrict attention to tests that induce the specific threshold participation
strategy χθ∗ . Since θ∗ > θ, consistency implies µN = EF [θ|θ ≤ θ∗]. Since for a given θ∗ the
probability terms and the payoff from non-participation in the principal’s objective function (5)
are constants, maximizing (5) is equivalent to maximizing Eτ [v̂(µ)]. This yields the optimization
problem stated in the lemma.

Case 2: θ∗ = θ. Two things change in this case. First, necessary and sufficient for the
inducement of threshold θ∗ = θ is that the agent has a weak incentive to participate when
he has the threshold signal. Second, µN is not pinned down by Bayes Law. However, since
non-participation occurs with probability zero, it does not matter for (5) which µN is selected.
Moreover, since a test induces the threshold θ∗ if the threshold agent has a weak incentive to
participate for some µN ∈ Θ, necessary and sufficient for the inducement of the participation
threshold is that he has a weak incentive to participate for µN = θ = EF [θ|θ ≤ θ]. Since partic-
ipation must be at least weakly optimal for the threshold agent, it is also in this case without
loss of generality to restrict attention to tests that induce the specific threshold participation
strategy χθ∗ .

It remains for me to argue why it is without loss of generality to consider the case where
the threshold agent’s participation constraint is binding. Assume to the contrary that θ∗ is
optimally induced by a test π′ for that the participation constraint holds strict. Consider the
class of test {π′′

ρ}ρ∈[0,1] that is constructed in the following way: with probability ρ the test
π′′

ρ does perfectly reveal the agent’s quality and with probability 1 − ρ the original test π′ is
executed. For all ρ ∈ (0, 1], any distribution τ ′′ρ that is induced by π′′

ρ and χθ∗ is a mean-
preserving spread of any distribution τ ′ induced by π′ and χθ∗ . Since v̂′′ > 0, Eτ ′′ρ

[v̂(µ)] >
Eτ ′ [v̂(µ)]. Thus, to obtain a contradiction, it suffices to find a ρ ∈ (0, 1] such that the threshold
agent’s participation constraint is binding. By the supposition, the threshold agent has a strict
incentive to participate if ρ = 0. By θ∗ ∈ Θ∗\Θ∗∗ and Lemma A2, the threshold agent has a
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strict incentive not to participate if ρ = 1. Since the threshold agent’s expected payoff from
participating in the test π′′

ρ when the supposed participation strategy is χθ∗ is continuous in ρ,
it follows from an Intermediate Value Theorem that there exists some ρ∗ ∈ (0, 1) such that his
participation constraint is binding. Contradiction. q.e.d.

Proof of Lemma 2

(a) Notice that θ∗ ∈ Θ∗\Θ∗∗ implies that only µY = EF [θ|θ ≥ θ∗] is consistent with χθ∗ . Thus,
to prove the result, it remains only to show that (1), (2) and (3) imply (4). I have

(

θ

µY

µ+
1− θ

1− µY

(1− µ)

)

τ(µ)

(2)
=

∑

s:µs=µ

(

θ

µY

µ+
1− θ

1− µY

(1− µ)

)

(π(s|g)µY + π(s|b)(1− µY ))

(1)
=

∑

s:µs=µ

(

θ

µY

π(s|g)µY +
1− θ

1− µY

π(s|b)(1− µY )

)

=
∑

s:µs=µ

(π(s|g)θ + π(s|b)(1− θ))

(3)
= τθ.

(b) Smoothness of ũθ∗ follows from smoothness of û and linearity of the additional factor.
It remains to investigate the signs of the derivatives of ũθ∗. I get the following:

ũ′

θ∗(µ) =

(

θ∗

µY

−
1− θ∗

1− µY

)

û(µ) +

(

θ∗

µY

µ+
1− θ∗

1− µY

(1− µ)

)

û′(µ)

ũ′′

θ∗(µ) = 2

(

θ∗

µY

−
1− θ∗

1− µY

)

û′(µ) +

(

θ∗

µY

µ+
1− θ∗

1− µY

(1− µ)

)

û′′(µ)

ũ′′′

θ∗(µ) = 3

(

θ∗

µY

−
1− θ∗

1− µY

)

û′′(µ) +

(

θ∗

µY

µ+
1− θ∗

1− µY

(1− µ)

)

û′′′(µ) (A.6)

Notice that the first expression in parentheses is strictly negative by θ∗ < µY whereas the
second expression in parentheses is strictly positive by θ∗ ∈ (0, 1). ũ′′

θ∗(µ) < 0 follows from this,
û′ > 0 and û′′ < 0. ũ′′′

θ∗(µ) > 0 follows from the signs of the expressions in parentheses, û′′ < 0
and û′′′ ≥ 0. q.e.d.

Proof of Proposition 3

Case 1: θ∗ ∈ Θ∗∗\Θ∗. By Lemma 1, I have to solve the program

max
π

Eτ [v̂(µ)]

s.t. Eτθ∗ [û(µ)] = uθ∗

π and χθ∗ induce τ

. (A.7)

Because of Lemma 2 (a), I can rewrite the first constraint as Eτ [ũθ∗(µ)] = uθ∗ such that
the distribution τθ∗ faced by the threshold agent disappears in the program (A.7). Because
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updating is Bayesian, the distribution τ induced by any π and χθ∗ is Bayes plausible, i.e.,
Eτ [v̂(µ)] = µY with µY = EF [θ|θ ≥ θ∗]. By a reasoning like in the proof of Proposition 1 in
Kamenica and Gentzkow (2011), any Bayes plausible distribution τ is induced by some π and
χθ∗ . This allows me to pursue an approach where I first determine the distribution τ ∗ that the
solves the program

max
τ

Eτ [v̂(µ)]

s.t. Eτ [ũθ∗(µ)] = uθ∗

Eτ [µ] = µY

. (A.8)

Any test π∗ that together with χθ∗ induces τ ∗ is then optimal.
I can now handle the first inequality constraint with a Lagrangian approach. By the La-

grangian Sufficiency Theorem, the following is true: If there exists λ ≥ 0 such that τ ∗ solves
the program

max
τ

L(τ, λ) (where L(τ, λ) is as defined in (8))

s.t. Eτ [µ] = µY

(A.9)

and

Eτ [ũθ∗(µ)] = uθ∗ , (A.10)

then τ ∗ is a solution to the program (A.8).
Step 1. Consider first the program (A.9) for a given value λ ≥ 0. This program possesses

a solution because it is just a concavification problem (see, e.g., Aumann and Maschler, 1995;
Kamenica and Gentzkow, 2011). If λ = 0, ϕλ,θ∗ = v̂. v̂′′ > 0 implies that the distribution
induced by a perfectly informative test and χθ∗ is optimal. It remains to consider λ > 0.
Because in this case ũ′′′

θ∗ > 0 by Proposition 2 (b) and because v̂′′′ ≥ 0, I have ϕ′′′

λ,θ∗ > 0. That
is, the function to be concavified has no linear portion. This has three important implications:
First, the maximizer is unique. Second, because the concavification problem is one-dimensional,
the maximizer must have a binary support. Third, it implies that the Lagrangian L(τ, λ) is
either concave, convex or first concave and the convex. As a consequence, the maximizer is
either the degenerate distribution that puts probability 1 on µ = µY or a binary distribution
where µ = 1 belongs to the support. I will denote the optimal distribution by τ ∗(λ). To sum
up, I know from the reasoning in this paragraph that if there exists λ ≥ 0 such that (A.10)
holds for τ = τ ∗(λ), the program (A.7) is solved by a degenerate distribution or by a binary
distribution where µ = 1 belongs to the support. That is, if an optimal test exists, it can only
be a completely uninformative or a NFP test. Since I know already that information generation
is possible for θ∗ ∈ Θ∗\Θ∗∗, only a NFP test can be optimal.

Step 2. Consider next (A.10) with τ = τ ∗(λ). By the reasoning in the preceding paragraph,
τ ∗(0) is the distribution induced by a perfectly informative test and χθ∗ . On the other hand,
because ũ′′

θ∗ < 0 by Lemma 2 (b), ϕλ,θ∗(µ) is strictly concave at µ = µY for any sufficiently large
λ. Hence, τ ∗(λ) is for any sufficiently large λ the distribution induced by a completely uninfor-
mative test and χθ∗ . Now recall that Eτ [ũθ∗(µ)] describes the threshold agent’s expected payoff
from participating in a test that induces together with χθ∗ the distribution τ . θ∗ ∈ Θ∗\Θ∗∗

implies that θ∗ can be induced by some informative test but not by a perfectly informative test.
This together with the previous two observations implies

Eτ∗(0)[ũθ∗(µ)] < uθ∗ < lim
λ→∞

Eτ∗(λ)[ũθ∗(µ)]. (A.11)
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Moreover, because L(τ, λ) is continuous in τ and the set of Bayes plausible distributions does
not depend on λ, it follows from Berge’s Maximum Theorem (see, e.g., Aliprantis and Border,
2006) that the set of maximizers of the program (A.9) is upper hemicontinuous. Since the
solution to the program (A.9) is unique, τ ∗(λ) is continuous. Because of this and (A.11), I can
apply an Intermediate Value Theorem. I obtain that there exists λ∗ > 0 such that (A.10) holds
for τ = τ ∗(λ∗). This concludes the proof for Case 1.

Case 2: θ∗ ∈ Θ∗∗. χθ∗ is then induced by any perfectly informative test π′. Notice that any
perfectly informative test π′ and χθ∗ induce the same the distribution τ ′. Notice further that
this distribution is a mean-preserving spread of any distribution τ ′′ that is induced by any test
π′′ that is not perfectly informative and χθ∗ . By this and v̂′′ > 0, Eτ ′ [v̂(µ)] > Eτ ′′ [v̂(µ)]. Hence,
the perfectly informative test πNFP

ρ with ρ = 1 is optimal. q.e.d.

Proof of Corollary 1

To prove this result, I have to solve the problem that I solved in the proof to Proposition 3
with a modified objective function. As the objective function mattered only through v̂′′ > 0
and v̂′′′ ≥ 0 in this proof, I only have to show that the modified objective functions in Part (a)
and Part (b) possesses these properties.

(a) Here I am interested in maximizing the objective function Eτθ∗ [−µ]. By (4), I can rewrite
this as Eτ [−µ̂(µ)] with

µ̂(µ) ≡

(

θ∗

µY

µ+
1− θ∗

1− µY

(1− µ)

)

µ.

Consistency of µY with the participation strategy implies µY > θ∗ for any θ∗ ∈ Θ∗. Since this
implies µ̂′′ < 0 and since µ̂′′′ = 0, I obtain the result.

(b) Here I am interested in maximizing the objective function Eτθ∗∗ [−û(µ)] with θ∗∗ > µY .
By (4), I can rewrite this as Eτ [−ũθ∗∗(µ)] with

ũθ∗∗(µ) ≡

(

θ∗∗

µY

µ+
1− θ∗∗

1− µY

(1− µ)

)

û(µ).

I get,

ũ′′

θ∗∗(µ) = û′(µ)

[

2

(

θ∗∗

µY

−
1− θ∗∗

1− µY

)

−

(

θ∗∗

µY

µ+
1− θ∗∗

1− µY

(1− µ)

)(

−
û′′(µ)

û′(µ)

)]

, and

ũ′′′

θ∗∗(µ) = 3

(

θ∗∗

µY

−
1− θ∗∗

1− µY

)

û′′(µ) +

(

θ∗∗

µY

µ+
1− θ∗∗

1− µY

(1− µ)

)

û′′′(µ).

Notice that the first expression in parentheses is strictly positive by θ∗∗ > µY and that the
second expression is also obviously strictly positive. ũ′′

θ∗∗ < 0 follows from this, û′ > 0 and the
assumption imposed on the Arrow-Prat measure of absolute risk-aversion. Finally, ũ′′′

θ∗∗ < 0
follows from positiveness of the first expression in parentheses, û′′ < 0 and the assumption that
û′′′ = 0. q.e.d.

Proof of Lemma 3

I have

a∗′(µ) =
γLγH

(µγL + (1− µ)γH)2
> 0,
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a∗′′(µ) =
2γLγH(γH − γL)

(µγL + (1− µ)γH)2

{

> 0 if γH > γL
< 0 if γH < γL

, and

a∗′′′(µ) =
6γLγH(γH − γL)

2

(µγL + (1− µ)γH)2
> 0. q.e.d.

Proof of Lemma 4

Step 1: Properties of the principal’s reduced-form utility function. By differentiating v̂, I get

v̂′(µ) = γLγH
γLµ

2 − γH(1− µ)2

(γLµ+ γH(1− µ))2
,

v̂′′(µ) =
2(γLγH)

2

(γLµ+ γH(1− µ))3
, and

v̂′′′(µ) =
6(γLγH)

2(γH − γL)

(γLµ+ γH(1− µ))4
.

The inequalities in the lemma follow directly from this.

Step 2: Properties of the agent’s utility function that will be important in Step 4. Some
properties of the agent’s reduced-form utility function depend on the Arrow Prat coefficient of
absolute risk-aversion. This coefficient at a is defined as rA(a) = −u′′(a)/u′(a). For HARA
utility (see Section 1 of the supplementary material), it is given by

rA(a) =
1

c1a+ c2
.

CARA utility corresponds to c1 = 0 and c2 > 0; CRRA utility corresponds to c1 > 0 and
c2 = 0. In both cases, stronger risk-aversion corresponds to smaller values of the non-zero
parameter.

I say that rA is sufficiently large if rA(a) ≥ r for all a ∈ [0, 1] and some sufficiently large r.
In particular, rA is sufficiently large if u is a CARA or a CRRA utility function that exhibits
sufficiently strong risk aversion. Moreover, I say rA is sufficiently small if rA(a) ≤ r for all
a ∈ [0, 1] and some sufficiently small r > 0. In particular, rA is sufficiently small if u is CARA
utility function that exhibits sufficiently weak risk-aversion.

Notice further that I have −(c1a + c2)u
′′(a) = u′(a) when u is a HARA utility function.

By differentiating both sides of this equation and rearranging, I obtain that the coefficient of
absolute prudence is

−
u′′′(a)

u′′(a)
= (1 + c1)rA(a).

Step 3: Properties of the principal’s optimal estimate that will be important in Step 4. It
follows from the formulas in the proof of Lemma 3 that

a∗′′(µ)

(a∗′(µ))2
=

2(γH − γL)

γ2
Lγ

2
H

≡ C(γH , γL).
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That is, the quotient is constant with respect to µ; its sign depends on the relative size of γH
and γL.

Step 4: Properties of the agent’s reduced-form utility function. First, I have

û′(µ) = u′(a∗(µ))a∗′(µ).

Because u′ > 0 and a∗′ > 0, û′ > 0. Second, I have

û′′(µ) = u′′(a∗(µ))(a∗′(µ))2 + u′(a∗(µ))a∗′′(µ).

By using the definitions in Step 2 and Step 3, I can write this as

û′′(µ) = u′(a∗(µ))(a∗′(µ))2(C(γH, γL)− rA(a
∗(µ))).

Consider first γH > γL. C(γH, γL) is then positive. It follows from this, u′ > 0 and a∗′ > 0
that û′′ > 0 if rA is sufficiently small and that û′′ < 0 if rA is sufficiently large. Consider next
γH < γL. C(γH, γL) is then negative. This implies û′′ < 0. Third, I have

û′′′(µ) = u′′′(a∗(µ))(a∗′(µ))3 + 3u′′(a∗(µ))a∗′(µ)a∗′′(µ) + u′(a∗(µ))a∗′′′(µ).

Consider first γL > γH . By Lemma 3 and my assumptions on u, each of the three summands
is weakly positive and the last two are strictly positive. Hence, û′′′ > 0. It remains to consider
γH > γL and HARA utility. By using the definitions in Step 2 and Step 3, I can write

û′′′(µ) = −u′′(a∗(µ))(a∗′(µ))3 [(1 + c1)rA(a
∗(µ))− 3C(γH , γL)] + u′(a∗(µ))a∗′′′(µ).

First notice that −u′′ · (a∗′)3 and u′ ·a∗′′′ are both strictly positive by u′ > 0, u′′ < 0 and Lemma
3. As also the remaining term is positive when rA is sufficiently large, I obtain also û′′′ > 0 in
this case. q.e.d.

Proof of Proposition 4

Case 1: γH > γL. Under the conditions of Lemma 4 where û′′ > 0, the principal and the agent
benefit both from information-generation. Perfect information-generation is possible with a
perfectly informative test. In particular, the test πNFP

1 is optimal.
Under the conditions of Lemma 4 where û′′ < 0 the implied reduced-form utility functions

satisfy all the conditions that I imposed on my reduced form model. Hence, Proposition 3
applies directly.

Case 2: γL > γH . I have in this case û′′ < 0 by Lemma 4. If θ∗ ∈ Θ∗∗, a perfectly informative
test is obviously optimal. I need thus only to consider the case where the principal wants to
induce a participation threshold θ∗ ∈ Θ∗\Θ∗∗. Before I come to the actual proof, I will derive
two auxiliary results. The first auxiliary result shows that when I increase the accuracy of a
NFP test for a given participation threshold, the principal’s expected payoff increases whereas
the threshold agent’s expected payoff decreases.

Lemma A3 Fix any θ∗ ∈ [θ, θ). Let τρ and {τθ,ρ}θ∈Θ be induced by πNFP

ρ and χθ∗. If û′′ < 0,
then Eτρ [v̂(µ)] increases continuously and Eτθ∗,ρ [û(µ)] decreases continuously in ρ.

Proof. Consider a NFP test with accuracy ρ. The quality perception associated with the
positive result is then µ2 = 1 and the quality perception associated with the negative result is
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µ1 as given in (6). First notice that continuity of Eτρ [v̂(µ)] and of Eτθ∗,ρ [û(µ)] in ρ follows from
continuity of µ1 in ρ and from continuity of u and v in µ. I have

dµ1

dρ
=

−µY (1− µY )

(1− ρµY )2
= −

µY

1− ρµY

(1− µ1) < 0. (A.12)

Because of Bayesian plausibility, ρ does not affect Eτρ [µ]. Thus, a higher ρ transforms the
principal’s quality perception distribution by a mean-preserving spread. Because v̂′′ > 0 by
Lemma 4, I obtain that Eτρ [v̂(µ)] increases in ρ.

I obtain from (7) that the expected perception from the threshold agent’s perspective is
decreasing in the test accuracy:

dEτθ∗,ρ [µ]

dρ
= θ∗(1− µ1) + (1− ρθ∗)

dµ1

dρ
=

[

θ∗ − µY

1− ρθ∗

1− ρµY

]

(1− µ1) < 0

The second equality follows from (A.12); the inequality follows from µY > θ∗. It follows from
this that an increase in ρ transforms the threshold agent’s quality perception distribution by
a mean-decreasing spread. Because û′ > 0 and û′′ < 0, I obtain that Eτθ∗,ρ [û(µ)] decreases in
ρ. q.e.d.

The second auxiliary result shows that Eτ [v̂(µ)] is an affine transformation of Eτ [a
∗(µ)], and

that this is in turn an affine transformation of Eτθ [a
∗(µ)].

Lemma A4 Fix any θ∗ ∈ [θ, θ). Let τ ′ be induced by a test π′ and χθ∗. Let τ
′′ be induced by a

test π′′ and χθ∗. Then, the following statements are equivalent:

(i) Eτ ′ [v̂(µ)] = Eτ ′′ [v̂(µ)]

(ii) Eτ ′ [a
∗(µ)] = Eτ ′′ [a

∗(µ)]

(iii) Eτ ′
θ
[a∗(µ)] = Eτ ′′

θ
[a∗(µ)] for all θ ∈ Θ

Proof. It follows from (9) that

γHa
∗(µ)(1− µ) = γLµ(1− a∗(µ)).

After rearranging, this becomes

µa∗(µ) =
γL

γL − γH
µ−

γH
γL − γH

a∗(µ). (A.13)

That is, µa∗(µ) is linear in µ and in a∗(µ). By using (9) and (A.13) to rewrite (10), I obtain

v̂(µ) = −
γLγH

γL − γH
(a∗(µ)− µ).

Because Eτ ′ [µ] = Eτ ′′ [µ] by Bayesian plausibility, I obtain immediately that (i) and (ii) are
equivalent. Next suppose that τ is induced by π and χθ∗ . By (4), I have

Eτθ [a
∗(µ)] = Eτ [

(

θ

µY

µ+
1− θ

1− µY

(1− µ)

)

a∗(µ)].

By (A.13), this is a linear function of Eτ [a
∗(µ)] and of Eτ [µ]. As the latter is constant by

Bayesian plausibility, I obtain the equivalence between (ii) and (iii). q.e.d.
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By Lemma 1 and the reasoning in the proof of Proposition 3, I have to solve the program

max
τ

Eτ [v̂(µ)]

s.t. Eτ [ũθ∗(µ)] = uθ∗

Eτ [µ] = µY

(A.14)

with û = u◦a∗ and v̂ = v ◦a∗. I will call any distribution τ with a binary support that contains
µ = 1 a NFP distribution. Notice that θ∗ is optimally induced by a NFP test if, and only if, a
NFP distribution solves the program (A.14).

Assume to the contrary that the the program (A.14) is not solved by a NFP distribution
but by some other distribution τ ′. Define a′ ≡ Eτ ′ [a

∗(µ)] and a′θ∗ ≡ Eτ ′
θ∗
[a∗(µ)]. Consider the

following auxiliary program:

max
τ

Eτ [ũθ∗(µ)]

s.t. Eτ [a
∗(µ)] = a′

Eτ [µ] = µY

. (A.15)

In this program, I strive to maximize the threshold agent’s expected utility subject to Bayesian
plausibility and to keeping the expected estimate constant. If this program is solved by a NFP
distribution, say τ ′′, I know that there exists a NFP test that is better for the threshold agent
and equally good for the principal. The latter property follows from Lemma A4. The former
property implies that the solution of the auxiliary program does not satisfy the participation
constraint (that I did not impose on the auxiliary program). However, by Lemma A3 and the
fact that the threshold agent has for θ∗ ∈ Θ∗\Θ∗∗ a strict incentive not to participate when the
test is perfectly informative, there exists another NFP distribution τ ′′′ that is Bayes plausible,
satisfies the participation constraint and is better for the principal than τ ′. That is, I obtain a
contradiction to the optimality of the non-NFP distribution τ ′.

It remains for me to show that some NFP distribution maximizes indeed the auxiliary
program (A.15). By using (4) to transform the objective function and the second constraint,
and by using Lemma A4 to replace the first constraint by an equivalent constraint that depends
on the expected perception from the agent’s perspective, I can rewrite the program (A.15) as

max
τθ∗

Eτθ∗ [u(a
∗(µ))]

s.t. Eτθ∗ [a
∗(µ)] = a′θ∗

Eτθ∗ [
µ

θ∗

µY
µ+ 1−θ∗

1−µY
(1−µ)

] = µY

. (A.16)

a∗(µ) is strictly increasing with range [0, 1] and inverse function

µ∗(a) ≡
γHa

γHa+ γL(1− a)
.

It follows that there exists a one-to-one mapping between distributions of estimates on [0, 1],
say τ̂ , and distributions of quality perceptions τθ∗ with

τ̂ (a) ≡ τθ∗(µ
∗(a)).

Hence, after substituting µ∗(a) for µ and simplifying the second constraint, I can rewrite the
program (A.16) as the following Lagrangian problem with Lagrange multiplier λ on the second
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constraint:

max
τ̂

L̃(τ̂ , λ) ≡ Eτ̂ [ϕ̃λ(a)− λµY ]

s.t. Eτ̂ [a] = a′θ∗
(A.17)

with

ϕ̃λ(a) ≡ u(a) + λµ̃(a) and µ̃(a) ≡
γHa

θ∗

µY
γHa+

1−θ∗

1−µY
γL(1− a)

.

Notice that the principal maximizes in this program over distributions of estimations where
the support is a subset of [0, 1] and the first moment is constant. Interestingly, this program
resembles the program (A.9) in the proof of Proposition 3. u assumes the role of v̂; µ̃ assumes
the role of ũθ∗ ; the assumption that the first moment of the estimate distribution is constant
assumes the role of Bayesian plausibility; the original Bayesian plausibility constraint assumes
the role of the participation constraint; the distribution τ̂ of estimates assumes the role of the
distribution τ of quality perceptions. Thus, to conclude this proof, I need only to show that
the properties that are crucial in the proof of Proposition 3 are satisfied here.

Translated in the notation of program (A.17), crucial for Step 1 in the proof of Proposition
3 was u′′′ ≥ 0 and µ̃′′′ > 0. The first property is what I imposed on the agent’s non-reduced
utility function. The second property can easily be checked. I obtain

µ̃′(a) =
γHγL

1−θ∗

1−µY
(

θ∗

µY
γHa+

1−θ∗

1−µY
γL(1− a)

)2 ,

µ̃′′(a) =
−2γHγL

1−θ∗

1−µY

(

θ∗

µY
γH − 1−θ∗

1−µY
γL

)

(

θ∗

µY
γHa +

1−θ∗

1−µY
γL(1− a)

)3 , and

µ̃′′′(a) =
6γHγL

1−θ∗

1−µY

(

θ∗

µY
γH − 1−θ∗

1−µY
γL

)2

(

θ∗

µY
γHa+

1−θ∗

1−µY
γL(1− a)

)4 .

Since γL > γH and µY > θ∗ imply
(

θ∗

µY

γH −
1− θ∗

1− µY

γL

)

< 0,

it follows that µ̃′(a) > 0, µ̃′′ > 0 and µ̃′′′ > 0.
Denote the distribution of estimates that solves the program (A.17) for a given value of λ ≥ 0

by τ̂ ∗(λ). Crucial for Step 2 in the proof of Proposition 3 was the sign of Eτ̂∗(λ)[µ̃(a)] − µY .
By assumption, there exists a distribution of estimates τ̂ ′ that has neither the support {0, 1}
nor the support {a′θ∗} such that Eτ̂ ′ [a] = a′θ∗ and Eτ̂ ′ [µ̃(a)] = µY . For λ sufficiently high, strict
convexity of µ̃(a) implies that τ̂ ∗(λ) is the distribution with support {0, 1}. It follows that
τ̂ ∗(λ) is a mean-preserving spread of τ̂ ′. Hence, by Jensen’s inequality,

lim
λ→∞

Eτ̂∗(λ)[µ̃(a)] > µY .
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For λ = 0, strict concavity of u implies that τ̂ ∗(0) is the degenerate distribution with support
{a′θ∗}. It follows that τ̂ ′ is a mean-preserving spread of τ̂ ∗(0). Jensen’s inequality implies in
this case

Eτ̂∗(0)[µ̃(a)] < µY .

Since the crucial properties of Step 1 and Step 2 in the proof of Proposition 3 are also
satisfied here, I obtain that a NFP test is optimal by an analogous reasoning. q.e.d.
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